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CHAPTER  ONE 

TNTRODUCTI ON 

Linearity is a beautiful thing in science and 

mathematics.  Frequently, it is easy to recognize and 

carries with it a long list of wonderful properties. 

Like many things we choose to describe as beautiful, 

linearity, too, is relatively rare in nature. 

Until recently, science's approach to nonlinear 

systems has been to coerce the ill behaved system into 

a more friendly linear form.  Some systems, however, 

stubbornly resist such linearization.  Such a system, 

once linearized, may no longer exhibit the same 

behavior as its parent system.  Granted, studying the 

new system is certainly much less painful but any 

answers found are to a completely different question. 

is all hope lost once the system being studied is 

found to be such a system?  For many scientists and 

for many years the answer was "Yes!"  Upon this 

discovery, the researcher would throw up his hands in 

disgust and look for a new model that was not so 

poorly behaved, hoping to find a rationalization for 

the nonlinear factor being deemed "insignificant 

anyway". 

1 



A recently renewed interest in nonlinear dynamics 

is causing a shift in this attitude.  New ways of 

characterizing and describing these systems are being 

developed which show that all hope is not lost. 

Students of nonlinear dynamics are realizing that 

seemingly harmless nonlinear systems can exhibit 

monstrous behavior.  This discovery sparks the hope 

that empirical data that appears equally monstrous may 

in fact have a simple underlying mechanism.  These 

"monsters" live in a world called Chaos and this 

thesis describes and develops techniques for looking 

at these systems. 

Definitions and Examples 

Traditionally, systems have been labeled either 

deterministic or stochastic.  Those systems that are 

predictable are called deterministic.  The motion of 

celestial bodies is one example of a deterministic 

system.  For hundreds of years, astronomers have been 

able to measure the position and velocity of heavenly 

bodies and, using planetary laws of motion, predict 

occurrences such as eclipses many years into the 

future.  Systems that resist prediction methods other 

than probability models are stochastic and are 



sometimes called random.  As an example of a 

stochastic system, consider the number of customers to 

patronize a business on a given day.  It may be 

possible to give general trends such as "business is 

always better toward the end of the month" or that 

"usually we have about 1,000 customers in a day" but 

predicting the actual number of customers is not 

possible.  For these systems, the best predictions 

available utilize probability models. 

Current research indicates there is middle ground 

that contains systems which are neither predictable 

nor random.  These systems that appear to be random 

but are actually deterministic are called chaotic. 

Briefly, a system is chaotic if nearly identical 

initial conditions move far apart as they are 

iterated.  This criteria is called local divergence or 

sensitive dependence on initial conditions.  This 

condition distinguishes a predictable deterministic 

process from a chaotic process since the sensitive 

dependence leads to unpredictability.  More precise 

definitions of chaos are given in Chapter 2. 

The weather is an example of a chaotic system, 

in this context, the local divergence property is 



frequently described as the "butterfly effect".  The 

butterfly effect theory hypothesizes that the air 

currents created today by the flapping of a 

butterfly's wings do not simply "die out", rather they 

affect surrounding air currents which in turn affect 

still other air currents and so on.  This would mean 

that the weather today may have been changed by the 

flight of a butterfly many years ago.  If this is 

true, long term forecasting of weather is impossible 

even if a simple physical model can be built. 

While the study of chaotic systems which lie in 

the middle ground between randomness and 

predictability is centuries old, the increased 

interest is relatively recent; three decades old, or 

so.  This interest is sparked by the creation of 

random looking data sets from simple mathematical 

models and also by the development of computer 

resources which make possible the data intensive 

computational methods of studying these data sets.  A 

classic example of such a data set comes from the so 

called "logistic equation"  xt+1 = X,-xt(l-xt).  For 

small values of the parameter X,   the system converges 

to either a fixed point or a cycle.  As this parameter 



is increased toward 4.0, all stable fixed points and 

cycles disappear and the data appear to be random 

values.  Perhaps then, some seemingly random series of 

data are the result of similarly simple systems. 

Contents of this analysis 

Work in this analysis begins by generating data 

sets from at least three models known to exhibit 

chaotic behavior.  The data sets are then treated as 

though the generating functions are unknown and 

several tests for randomness are applied to determine 

if the data may be the result of a chaotic system. 

Next, a model is built in an attempt to recreate the 

original model from the data.  In addition, a 

statistical model is built using standard multiple 

regression and time series techniques.  The 

traditional method uses a Box-Jenkins Autoregressive 

Integrated Moving Average (ARIMA) model [1, p.449] . 

The predictive power of the two models, chaotic and 

stochastic, is then compared to determine the 

effectiveness of the chaos approach. 

Data sets studied in this analysis are from the 

Logistic equation, the Henon equations, and the 

Rossler equations. 



Organization of chapters 

A brief description of the concepts and 

definitions essential to the study of chaotic 

dynamical system as well as references for further 

reading are found in Chapter 2.  Also in Chapter 2 are 

descriptions of the specific analysis tools that are 

applied in this thesis along with references. 

The method of analysis is described in Chapter 3 

and consists of three sections.  The first section 

focuses on current techniques available to test for 

randomness in a data set being studied.  Topics 

covered in this section include phase space analysis 

using the method of delay coordinates, the Hurst 

coefficient and Rescaled Range {R/S)   analysis, the 

correlation integral and correlation dimension, the 

Lyapunov exponent, and the Shuffling diagnostic.  The 

second section offers methods for modeling data that 

the tests for randomness imply may be chaotic using 

dynamical systems.  The second section also outlines 

the use of the correlation dimension, phase portrait 

analysis and autocorrelations to choose appropriate 

model equations.  These models are then fit to the 

data using a least squares regression and the 



regression output is analyzed for suggestion of a more 

appropriate model.  The third section describes 

analyzing the predictive power of the chaotic models 

and comparisons of this predictive ability with that 

of models built using classical time series 

techniques.  In this section, the system will be 

iterated using the deterministic model and also a 

classic time series model and the number of iterations 

before significant deviation from the original data 

set computed for both.  The results confirm that the 

data set can be better modeled using the methods of 

chaos. 

These steps are applied to the generated data 

sets and a description of the analysis is given in 

Chapter 4. 

Finally, Chapter 5 provides a summary of the 

results along with conclusions drawn from these 

results.  Also included in this chapter are 

recommendations for further study and suggested areas 

for extension of this work. 

Objective 

The goal of this paper is to demonstrate the 

process outlined above which combines several current 



techniques and to outline a procedure for testing and 

modeling any series of data suspected of having an 

underlying deterministic chaotic explanation. 



CHAPTER  TWO 

DEFINITIONS  AND  EXAMPLES 

This chapter provides the basic concepts and 

definitions essential to studying things that live in 

the world called Chaos. 

Time Series 

Throughout this paper the term series refers to a 

list of data taken at discrete intervals and arranged 

according to the order in which the observation was 

made.  For example, the monthly Dow Jones Industrial 

Average would be called a series {xt} where 0<t<JV-l. 

The number N  represents the number of months in the 

list of data to be studied.  The term x0 would be the 

Dow Jones average for the first month and x^j 

represents the average for the ith  month.  The choice 

of starting index, in this case zero, has no effect on 

the behavior of the system.  Starting with zero is the 

most common convention because it allows the 

interpretation of the index as the observation taken t 

units after the initial observation.  If, as in the 

case of the Dow Jones average, the index variable is 

time, the series is called a time series. 



The use of series in this context is the same as 

that adopted by the current literature, which is quite 

different from the mathematical use involving 

summation.  Strictly speaking, the lists used in this 

study are sequences of observations. 

Dynamical Systems 

The state of a system is the condition of the 

system for a specified value of the index variable. 

For the Dow Jones average, the state of the system is 

the condition of all factors that impact the market. 

The time series of Dow Jones averages is a one 

dimensional observable which is a representation of 

the state of the system.  The state space of a system 

is where these states live.  For the Dow Jones 

average, the state space studied is one-dimensional, 

the positive real line.  Other systems may have higher 

dimensional state spaces.  For example, one may wish 

to simultaneously study the Dow Jones and the S&P 500 

averages.  This state space would be two dimensional 

since it takes the value of both averages to specify 

the state of the system. 

The Dow Jones average is an example of a time 

series originating from observations of some "real 

10 



world" system, time series can also be created by 

taking values of some mathematical system at discrete 

time intervals.  Dynamical systems are common sources 

of such data.  A good, intuitive explanation of what 

is meant by a dynamical system is given in [2, p.2]: 

"A dynamical system can be thought of as any set of 

equations giving the evolution of the state of a 

system from a knowledge of its previous history". 

Simply put, applying the knowledge of where we have 

been and iterating with the dynamical system tells us 

where we are going. 

Fractal Geometry and Attractors 

The time series generated from a dynamical system 

is called a trajectory.  In a sense, the trajectory is 

the path the system follows as it moves through its 

state space.  A subset of the state space toward which 

almost all sufficiently close trajectories are 

attracted is called an attractor [3, p.73].  An 

attractor that has a fractal structure is called a 

strange attractor.  The most common characteristic of 

a structure which is called fractal is a non-integer 

dimension.  This fractal dimension is always no 

greater than the (Euclidean) dimension of the space in 

11 



which it is embedded.  Since a strange attractor is a 

common, but not necessary, characteristic of a chaotic 

system, fractal geometry is frequently encountered in 

the study of chaos. 

Several different measures of fractal dimension 

exist, but probably the most common is called the box 

counting dimension [4, p.34].  This dimension is 

defined by covering the image with n-dimensional boxes 

whose sides have length s where n  is the dimension of 

the embedding space.  The number of boxes required to 

cover the image is then counted.  This process 

continues for smaller and smaller boxes.  The 

following equation, in the limit, defines the 

dimension: 

D=lim supe ^0 log N(e ) / log(l/e) 

D =  fractal dimension 
N(&)  = Number of boxes to cover image 
E = length of sides of boxes 

For further reading about fractal geometry, [5] is an 

excellent reference. 

Attractors can normally be found only if the 

equations for the system being studied are known and 

even then finding the attractor is not guaranteed,  in 

12 



studying real systems using dynamical systems as 

models, techniques are employed to reconstruct the 

attractor from the (finite) data available.  Although 

the reconstructed attractor is only an approximation, 

it may hold useful information about the dynamics of 

the system and provide clues to the best ways to model 

it. 

Deterministic, Stochastic and Chaotic 

The requirement for a system to be called 

deterministic is just that it not be stochastic.  A 

process is called stochastic if one or more variables 

are random.  A variable is said to be random if it 

takes on values according to some (perhaps unknown) 

probability distribution.  Although the definition of 

chaos varies from reference to reference, there are 

some basic requirements common to most definitions: 

(1) sensitive dependence on initial conditions , (2) 

some degree of regularity and (3) recurrence.  Here, a 

point is called recurrent [6, p. 48] if for any open 

interval about that point, the system returns to that 

interval after a finite number of iterations.  Most 

chaotic systems are low dimensional, non-linear, 

deterministic dynamical systems.  Although completely 

13 



deterministic, the non-linearities cause these systems 

to appear stochastic.  With the basic definition of a 

chaotic dynamical system completed, the focus now 

shifts toward ways to look at the behavior of the 

system and tools used to understand this behavior. 

Graphical Analysis Tools 

There are several graphical views of a time 

series that are frequently enlightening.  These plots 

are the first diagnostic tools applied in attempting 

to determine if some deterministic structure exists. 

The first, the time plot, is a graph of the series 

values as the dependent and the index variable as the 

independent variable.  The name "time plot" may seem 

misleading since the index variable is not necessarily 

time.  Since most series have time as the index, 

however, this name is tolerable and is used throughout 

the paper.  The phase portrait plots one series value 

against previous values.  For example, if the time 

series is one dimensional {xt}, one example of a (two 

dimensional) phase portrait would graph xt+1 versus 

xt.     The phase portrait may also be higher 

dimensional.  For example, a plot of xt+2 on the z- 

axis, xt+1 on the y-axis, and xt on the x-axis of R 

14 



is a three-dimensional phase portrait.  The two- 

dimensional example uses a lag period of one.  The 

phase portrait for a lag period of n  plots xt+n 

against xt. Building a phase portrait in this way is 

also called the method of delay coordinates for phase 

space reconstruction. 

A web diagram (Figure 2.1 below) is a variation 

on this idea in two dimensions [4, p.23].  Here the 

pairs (xt,xt+1) are plotted with the pairs (xt,xt).     Then 

a trajectory is traced alternately connecting (xtxt) 

to (xt,xt+l) and then (xt,xt+1) to (xt+1,xt+1).  To better 

understand the web diagram, consider a data set 

generated from a known function.  Plot this function 

as well as the line xt = xt+1 and begin at some 

starting point, x0.  Then, draw a line vertically to 

the curve representing the function followed by a 

horizontal line to the line xt+1 = xt and so on. 

This representation shows the orbits of the function f 

defined by f(xt) = x t+1 whereas the phase portrait shows 

only the points themselves.  Often this gives a better 

"feel" for the dynamics of the system than a simple 

phase portrait.  Caution should be used when working 

with long lists of data for which the function is not 

15 



known, as the web diagram may tend to hide some of the 

structure with unnecessary clutter. 

x 
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Figure 2.1     Web diagram for logistic equation 

Hurst Coefficient 

The Hurst coefficient, H,   is the first diagnostic 

tool applied in this analysis ([7, Chap.4],[8, p.386], 

[9]).  First, an intuitive explanation of this 

coefficient is given and then the details of 

calculating its value are provided. 
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To apply general theory to a specific time series 

{xt} with 0 < t < n,   the first step is to transform 

the given data set to a new set {x?t}  which has mean 

zero and standard deviation one.  This is easily 

enough done by subtracting the mean value from each 

value in the series and then dividing by the sample 

standard deviation. 

Analysis using the Hurst coefficient relies on 

the fact that if the data set being studied is the 

result of a random process, then the present value of 

the series is not influenced by previous values.  For 

such a process, the series {am}  defined below becomes 

what is known as a random walk. 

m 
am = I (x't)   for l<7n<n 

t = i 

For a process to be called a random walk, it must 

move from the current state according to some set of 

rules which do not depend on the current state.  As an 

example of a random walk, consider a discrete time 

sequence of values on the real line which begins at 

zero and moves at each point in time with equal 

17 



probability one unit in either the positive or 

negative direction. 

The range, Rn,   of this new series, {am}  is 

defined as: 

Rn  = max (a m)   -  min (a m) 1 < m < n 
m m 

When the data is the result of a random process, it is 

a well known result that this range scales as the 

square root of n,   the length of the series.  That is, 

the limit as n  tends to infinity of Rn /n
0-5 exists and 

is finite and positive. 

For a data set which is not the result of a 

random process, the present value is influenced by 

previous values.  This is what is referred to as a 

memory effect.  In this case, the series {am}  is no 

longer a random walk.  For such a series, the range 

scales as some power of n  other than 0.5. 

The scaling exponent described is what is known 

as the Hurst coefficient.  The conditional 

distribution of the current value given previous 

values in the series is, at best, very difficult to 

estimate while the Hurst coefficient gives 

U 



qualitatively similar information and is relatively 

simple to estimate. 

If an infinite amount of data were available, it 

would be possible to test whether the sequence 

(R/S)n /n0-5  converges.  Since only a finite amount of 

data is available, an alternative form of the scaling 

law must be applied.  The form of the law being 

applied states that for a random walk, the expected 

value of (R/S)n  is given by c-n0-5.     The method used to 

estimate the Hurst coefficient described below 

averages the values of (R/S)n  for disjoint subseries 

for each value of n  starting with 3 and continuing to 

N/2   for a series of length N.     This "sample mean" 

approximates the expected value of (R/S)n  for each n 

and is an effective use of limited data when 

estimating H. 

The method for estimating the Hurst coefficient 

for a series {xfc}, with 0< t<N-l,   begins by 

partitioning the time period 0< t<N-l   subintervals 

of length n.  The subintervals are labeled Ia  with 

1< a< A with A equal to the greatest integer less than 

N/n.     The first subinterval is from 0 to n-1   and each 

subinterval is from fc-a-1 to (Jc+l)-a-l for some 
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integer k.     The later points in the original interval 

remaining after partitioning are discarded.  Each 

member of the original series, xt, is then renamed Nka 

with l<k<n.     In the new labeling system, k 

represents the position within the subinterval and a 

represents the subinterval.  For each subinterval, the 

mean value of the series values, ]Xa,   is calculated. 

The cumulative departure from the mean is given by the 

formula: 

k   =  1 

The range for each subperiod is defined as the 

difference between the maximum and minimum of Xm^a 

according to: 

RIa =  max(X^a) - minp^a)   l<m<n 
m m 

The sample standard deviation is calculated for each 

subperiod according to: 

SIa  = ((1/fl) • I (Nk,a ~  \laY) 

k   =  1 

2\0.5 
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Each range is now normalized using the following 

formula: 

A 

(R/S)n  = (1/A) • I (Rla/Sij 

a = 1 

This is repeated for each integer value of n  less than 

(i\7-l)/2 beginning with n  = 3.  Finally, the Hurst 

coefficient, H,   is given by the equation: 

(R/S)n = (c± ■ nf 

In the limiting case of an infinite amount of noise- 

free data, this equation holds true for all n.     Using 

a finite amount of data, H must be estimated using a 

least-squares regression.  To approximate the value of 

H, logarithms are first taken: 

log(i?/5)n =  c2  + H ■   log(n) 

The value of H  is then the ß1  coefficient in the 

regression equation: 

log(R/S)n =    ß0 + Pi • log(n) 

21 



This calculation is now demonstrated for two 

simple examples.  For the first example, consider the 

system {xt}     0< t < 10 defined by: 

xt+1 = xt +  1    with x0 

For this example, possible subintervals are of lengths 

three, four, and five.  The values of the sub-series 

after subtracting the subinterval mean are: 

n =  3   (-1, 0, 1) 

n  = 4   (-1.5, -0.5, 0.5, 1.5) 

n =  5   (-2, -1, 0, 1, 2) 

The cumulative departure from the mean for each 

subinterval is: 

n  = 3     (-1, -1, 0) 

n  = 4     (-1.5, -2, -1.5, 0) 

n  = 5     (-2, -3, -3, -2, 0) 

The range and sample standard deviation for each 

subinterval are: 

n =  3 range = 1.0 s.d. = 0.816 

n = 4 range = 2.0 s.d. = 1.118 

n = 5 range = 3.0 s.d. = 1.414 

22 



The rescaled range (R/3)n  for each value of n  is: 

(R/S)2 = 1.225 

(R/S)A = 1.789 

[R/S)5  =  2.121 

Taking logarithms and using the ßx coefficient in 

the following regression equation to estimate the 

Hurst coefficient yields the result H =  1.08. 

log {R/S)n  = ßo + Pi ■ log(n) 

This coefficient value should be 1.0 and the larger 

approximation is the result of applying a method which 

increases in accuracy with sample size to a very small 

data set.  Calculation of the Hurst coefficient for 

the series same series, that is xt+1 = xfc+l, using 100 

data points yields H=1.02 and for 1,000 points H=1.005 

supporting the conclusion that the true value of H  is 

1.00.  The actual results are not significant to the 

work done here, the objective is simply to illustrate 

the process of estimating the Hurst coefficient for a 

simple data set. 

Repeating this calculation for a strictly 

alternating series, that is {xt}={0,1,0,1,0,1, ...}, 

23 



produces an interesting result.  The plot of log(R/S)n 

against log(n) produces two lines, one for even values 

of n  and the other for odd values (Figure 2.2) .  Both 

lines have slope which goes to zero as n increases 

showing that the scaling of {R/S)n  is not proportional 

to N,   that is #=0.0.  Apparently the appearance of two 

lines is because the mean for subseries whose length 

is an even number is 0.5, and when the length is odd 

the mean is not 0.5 and therefore the series is not 

I 
O) 
o 

0.8 

0.6 

0.4 

0.2 

0.0 - 

■0.2 

log(n) 

Figure 2.2 R/S plot for alternating series 
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symmetrically distributed about the mean.  The full 

explanation and impact of this result is not 

completely understood but this does not seem to be a 

barrier to the application of R/S  analysis in this 

thesis. 

The actual coefficient values range from 0 to 

1.0 [7, p.61].  Although the earlier example 

demonstrates that, particularly for small values of n, 

the estimated coefficient may not necessarily be in 

this range.  For an independent and identically 

distributed random variable, the value of H tends 

asymptotically to 0.5 as n  tends to infinity due to 

the previously mentioned scaling law for random walks. 

A value of the Hurst coefficient significantly 

different from 0.5, therefore, provides evidence that 

there may be a deterministic structure.  Note that it 

does not guarantee the existence of structure, rather 

it gives no evidence showing the process is random. 

The values of H which are greater than 0.5 are 

called persistent.  Persistent series have, at each 

point in time, a higher probability of following the 

current trend than reversing it.  If the Dow Jones 

average were shown to be persistent, then if this 
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month's average is higher than the previous month's, 

next month's average has a greater probability of 

being higher than lower.  A Hurst coefficient less 

than 0.5 indicates the system is antipersistent.  For 

antipersistent series, the probabilities are reversed. 

Sometimes the term "mean reverting" is used in place 

of antipersistent in the case of the existence of a 

stable mean and "trend reinforcing" is used for 

persistent. 

When using rescaled range analysis for small data 

sets such as the ones in this thesis, Peters cautions 

that the estimated H values will generally be higher 

than the true value.  To help deal with this problem, 

Peters offers an equation which estimates the expected 

value of (R/S)n  as a function of n   [7, p.71].  This 

estimate is the result of calculating the average of 

{R/S)n  values for a large number of sets of n  random 

numbers generated from Monte Carlo simulations. 

Peters calculated the value of H  for a wide range of 

values of n  and the following equation was derived: 

n-l 

E((R/S)n) =  ((n-0.5)/nHn-7l/2)-°-50 -I ((n-r)/r)c 
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For this analysis, this equation was used to generate 

(R/3)n  values between 3 and 500 (those which will be 

used when analyzing 1,000 point data sets) and the 

Hurst coefficient estimated.  The result is an 

expected H value of 0.558 for a random data set 

consisting of 1,000 points. 

To determine which values of H  should be 

considered significantly different from a given value, 

it would be useful to know something about the 

variance of H.     No such information is currently 

available and for this thesis a value of H will be 

considered significantly different if it differs by 

more than 0.05.  This is based on experience applying 

R/S  analysis to several sets of 1,000 generated random 

numbers. 

Lvaounov Exponents 

The Lyapunov exponents [10, Sec. 5.4] are a set 

of coefficients relating to chaotic dynamical systems 

which are much more prevalent in the literature than 

the Hurst coefficient.  Briefly, these exponents 

measure the exponential rate of expansion or 

contraction of phase space in different directions as 

the system moves through time.  A good, intuitive way 
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to think of these exponents is to envision the taffy 

pulling machine at a favorite amusement park.  Place a 

drop of food coloring in the middle of the taffy (the 

phase space) and turn the machine on (the dynamics). 

The taffy is stretched in one direction and therefore 

is longer and thinner.  The drop of coloring is now 

longer in the stretching direction (the first 

principal axis of the now three-dimensional ellipsoid) 

but shorter in the perpendicular directions (the other 

two principal axes).  The number of Lyapunov exponents 

is equal to the number of dimensions of the phase 

space, in this case three.  The exponential rate of 

stretching in this example corresponds to what is 

called the largest Lyapunov exponent.  The degree of 

stretching, in this case negative stretching, 

corresponds to the remaining two Lyapunov exponents. 

Caution must be used to take the measurements during 

the pulling phase and not include the folding phase. 

The exponent measures stretching without folding by 

examining a very small drop of food coloring.  In 

theory this is accomplished by choosing an arbitrarily 

small initial drop,  in practice, no such drop can 

exist so an approximation must be made.  The solution, 
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when folding is encountered, is to select a new set of 

points closer together which hold most of the 

information that the original points being iterated 

possessed.  This is accomplished by adding a new, very 

small, drop of coloring which is essentially a scaled 

down version of the current (stretched and about to be 

folded) drop. 

For those readers familiar with phase space 

analysis of differential equations, it may be useful 

to relate Lyapunov exponents to eigenvalues and 

eigenvectors.  In phase-space analysis of second-order 

systems, fixed points are identified and eigenvalues 

and eigenvectors are used to build a "phase sketch" 

which gives qualitative information about the 

trajectory of a given starting point and the stability 

of the fixed points.  The real part of the eigenvalues 

describes the rate at which a given trajectory moves 

toward or away from a fixed point.  Whereas the 

eigenvalues describe behavior only near a fixed point, 

the Lyapunov exponent generalizes this idea to orbits 

which may not be fixed or periodic points. 

Formally, the Lyapunov exponents are defined by 

evolving an infinitesimal n-sphere in phase space. The 
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n-sphere then becomes an n-ellipsoid.  From this 

ellipsoid, the ith  one-dimensional Lyapunov exponent 

is defined in terms of the length of the principal 

axis of the ellipsoid, Pj(t) as: 

1      Pi(t) 
X i = lim — log2   

t-x» t       Pi(0) 

The difficulty in calculating the Lyapunov exponents 

using only a finite amount of data is that 

infinitesimal n-spheres can not be used.  The object 

of using an infinitesimal n-sphere is to measure only 

the stretching and contracting of phase space without 

including any folding of the phase space that occurs. 

The method of numerically estimating the largest 

Lyapunov exponent used in this paper is the fixed 

evolution time method described in [11]. 

The procedure for estimating the largest exponent 

begins by constructing a phase portrait from the given 

time series using the method of delay coordinates. 

The point on the attractor in the constructed phase 

space that is closest (in Euclidean distance) to the 

initial point in the series is selected.  This point 

is called the initial neighboring point.  The distance 
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between these two points is labeled L(t0).  After some 

evolution time, 8t, this initial length has evolved to 

a new value L'(t{)  with tx = t0 + 5t.  The notation 

L'(-) distinguishes the distance between evolved points 

at a given time from the distance, L(- ), between 

replacement points at the same time.  The evolution 

time, 5t, is chosen small enough that only the local 

stretching is measured without including any folding 

of phase space.  Then, a replacement point for the 

evolved initial neighboring point is chosen which is 

close to the evolved initial point and whose angular 

separation from the evolved neighboring point is 

small.  This new pair of points, the evolved initial 

point and the replacement point, approximates the 

outcome of evolving an initial pair of points whose 

separation was smaller than L(t0).  This process 

continues until the initial point is evolved through 

the entire data set.  In this way, the result 

approximates starting with a pair of points which are 

arbitrarily close.  The largest Lyapunov exponent is 

then estimated by: 

1     M L'(tk) 

X1  =    X log2   

tm ~  fc0 k=l ^Jc-l) 
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In the limiting case of an infinite amount of 

noise free data, this method uses replacement vectors 

of infinitesimal length and with zero angular 

separation and so gives the exponent by definition. 

Some caution should be used when applying this method 

in order to minimize errors induced by the choice of 

replacement vectors. 

The largest Lyapunov exponent is the most 

frequently used because it must be positive to have 

chaos in the system.  When all exponents are negative 

it is an indication that the system, regardless of 

starting point, will be forced toward a stable 

solution,  in the taffy example, this corresponds to 

negative stretching in all three directions.  The 

result would be a large stable mass with no mixing or 

pulling or folding. 

The analysis in this paper uses the largest 

Lyapunov exponent in two ways.  First, the sign of the 

exponent must be positive for there to be chaos. 

Second, the magnitude of the largest exponent tells 

the rate at which information about the initial state 

of the system is lost through time.  This is used to 

determine how far into the future the system can be 

32 



predicted given the measurement precision of the 

initial condition.  For example, given two data sets 

whose measurements have the same precision, the set 

with the smaller exponent can be predicted further 

into the future. 

Correlation Integral and Dimension 

The final concept introduced is related to how 

many dimensions, or degrees of freedom, the system 

has.  Degrees of freedom are basically the number of 

independent variables required to describe the system. 

A large number of degrees of freedom becomes 

essentially random, therefore a small number of 

dimensions are essential to be able to effectively 

model the system.  The correlation integral [12] 

provides some help answering the question of how many 

dimensions. 

The correlation integral is calculated from a 

given time series, {xt} , by first constructing the 

phase portrait using the method of delay coordinates 

described previously [13].  The points on the 

reconstructed attractor are labeled z1? z2, ..., zn  with 

*i = (xi+k> xi+k-i<  ■■■» xi) where k+1  is the embedding 

dimension and n  is equal to the number of points in 
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the time series minus k.     From the constructed phase 

portrait, the following equation is used to calculate 

the correlation integral: 

Inn . 
C(s,n) = I I C7(E-|zi-Zj|) 

n2  J=i   i=1 

In this equation, U( ■)    is the unit step 

function: C7(x) = 1 if x is positive and 0 otherwise. 

The value of C(e,n) gives the probability that a 

randomly chosen pair of points on the attractor are 

separated by less than s.  Letting n  tend to infinity, 

this equation defines C(s) according to: 

C ( s) = lim C{s,n) 
n-»oo 

The correlation integral leads to what is called the 

correlation dimension, D2,  which is defined as: 

lnC(e) 
D2 = 1 im 

E->0 In 8 
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For a finite amount of data, this dimension is 

approximated by the ßx coefficient in the regression 

equation: 

ln(e) = ß0 + ßi • lnC(e,n) 

This equation holds for values of 8 between minQz^Zj \) 

and max(|zi-zJ'|).  Further discussion of the 

correlation dimension can be found in [2]. 

The correlation dimension gives the minimum 

number of variables that will be required to model the 

system.  Note that it does not give information about 

how many variables are enough, it only tells how many 

are not enough.  For example, a correlation dimension 

of 2.1 indicates at least three variables required. 

The real system could require 250 variables.  A 

correlation dimension of 250 means at least 250 

variables are required and it may be time to look for 

a new data set. 

Definitions of Chaos 

This final section presents several authors' 

definitions of chaos.  The definitions are not 

essential to the work in this thesis and are provided 

primarily to show the diversity in interpretations of 
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what is meant by "chaotic".  The first definition 

comes from [3].  in their definition "Deterministic 

processes that look random are called deterministic 

chaos." More rigorously, the series {at} has a 

deterministic chaotic explanation if there exists a 

system, (h,F,x0),   such that h  maps 2?n to R,   F maps R11  to 

Rn,   at  = h(xt),   xt+1 = Fi*t)  and xo is the initial 

condition at t = 0 .  The map F  is deterministic, the 

state space is n-dimensional, all trajectories {xt} 

lie on an attractor A, and two nearby trajectories on 

A locally diverge.  Local divergence is formalized by 

requiring the largest Lyapunov exponent to be 

positive. 

A more topological definition is given [6].  The 

definition of chaos requires a few preliminary 

definitions. 

Sensitive dependence on initial conditions 

A function f  that maps a set J  to itself has 

sensitive dependence on initial conditions if 

there exists 5 >0 such that, for any xeJ  and 

any neighborhood N  of x,   there exists yeN  and 

n>0 such that \fn (x) - fn (y)| >8 . 
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Topoloaical transitivity 

A function f that maps a set J" to itself is 

said to be topologically transitive if for any 

pair of open sets U,VcJ   there exists k>0   such 

that fk(ti)nv*0 . 

Periodic point 

A point x is a periodic point of period n  if 

fn(x) = x . 

Dense set 

The subset, U,   of periodic points in the 

attractor, S,   is said to be dense in S  if 

closure(L7) = S . 

With these definitions, a function f that maps a 

set V  to itself is said to be chaotic if: 

1. f  has sensitive dependence on initial 

conditions. 

2. f  is topologically transitive. 

3. periodic points are dense in V. 

Devaney summarizes saying a chaotic map has unpredict- 

ability, indecomposability, and an element of 

regularity.  Unpredictability and regularity may at 
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first seem incompatible.  Basically, if the current 

state could be identified with infinite precision, the 

entire fate of the system could be determined.  This 

is regularity.  Since this is impossible and only 

finite accuracy is possible, the predictive power is 

limited.  Thus, the system is ultimately 

unpredictable. 

Harrel provides symptoms of chaos rather than a 

strict definition [4].  These symptoms are 

a) A positive Lyapunov exponent, 

b) The mixing property, and 

c) fractal geometry. 

Ordinarily, he says, a chaotic dynamical system will 

exhibit at least two of these signs.  The "mixing" 

property he uses states that a dynamical system is 

mixing if for any pair of measurable sets A  and B, 

lim^^ ii{^t'1{A)r\B)   =  u(A)-u(B). 

In this definition, ^ is an invariant measure on the 

state space and 4>t(-) is the flow of the dynamical 

system. 

This completes the development of key ideas that 

are used in the next chapter which describes the 
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application of these tools to testing for randomness 

in data and building a dynamical model of systems 

which show evidence of a deterministic structure. 
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CHAPTER  THREE 

METHODS 

introduction 

Chapter 2 provided an introduction to the world 

called Chaos.  This chapter describes how to analyze a 

time series and then build and test a deterministic 

model of the series. 

Overview 

The method presented in this chapter evolved from 

an idea presented by Dr. William Lesso in a paper [14] 

which described modeling the sunspot numbers as a 

deterministic nonlinear system.  This method consists 

of four stages: (1) graphical analysis, (2) 

application of diagnostic tools, (3) development of a 

deterministic model, and (4) evaluation of the 

effectiveness of the model in forecasting. 

Graphical analysis 

When presented with a new (one dimensional) 

series, two graphical analysis tools are used to gain 

a better understanding of the nature the data than is 

available by simply looking at a long list of numbers. 

The first plot examined is the time plot.  First, the 
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series is plotted for the entire time domain.  If the 

number of observations is large, perhaps more than 

200, it may be appropriate to make several plots using 

smaller subdomains.  This technique reveals more 

detail and provides more information about the 

structure of the data. 

The other graphical tool applied is the phase 

portrait using a two-dimensional phase space and a lag 

period of one.  Further variations on the phase 

portrait will be explored later in the analysis.  The 

goal at this point is only to get a feel for the 

nature of the system being studied, not to analyze it. 

visual analysis of these simple graphs may yield 

ideas about the structure of the data.  The next step 

is to use diagnostic tools to uncover firm evidence as 

to the true nature of the system. 

Diagnostic Tools 

The main objective in applying the following 

diagnostic tools is to determine whether the data 

being analyzed may be the result of a low-dimensional, 

deterministic, chaotic dynamical system.  Throughout 

this thesis, this is referred to as the deterministic 

hypothesis.  The other objective is to obtain 
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quantitative information about the data which will be 

useful in building a forecasting model. 

In looking at the time plot, trends and patterns 

may or may not be evident in the data.  Estimation of 

the Hurst coefficient provides much better information 

about the presence of trends than a simple visual 

analysis of the time plot.  A Hurst coefficient which 

is not significantly different from the expected Hurst 

coefficient for a random process indicates that the 

range of the data scales at the same rate as for a 

random process and therefore it is likely that the 

data are not the result of a deterministic system.  A 

coefficient value which is significantly different 

indicates then, that it is likely the system being 

studied is deterministic. 

Note that a Hurst coefficient significantly 

different from the expected coefficient for a random 

system is neither necessary nor sufficient to conclude 

that the system is deterministic.  Rather, it 

indicates that the scaling is typical of that for a 

deterministic system and therefore it is likely the 

system is deterministic.  A Hurst coefficient which is 

significantly different from the expected coefficient 
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for a random system is considered evidence in support 

of the deterministic hypothesis. The BASIC code used 

to compute the Hurst coefficient is found in Appendix 

A. 

The next diagnostic tool applied determines if 

the data are spatially correlated.  Spatial 

correlation means that as the data are embedded in 

progressively higher dimensional phase spaces using 

the method of delay coordinates, the dimension of the 

reconstructed attractor stabilizes to a constant 

value.  Strictly speaking, the dimension of the 

attractor used should be the box counting dimension. 

This dimension is difficult to calculate from a data 

set, however, and the correlation dimension is much 

less expensive to compute and provides a reasonable 

estimation of the box counting dimension.  The Turbo 

Pascal code for estimating the correlation dimension 

is supplied in Appendix B. 

Finding that the data is spatially correlated is 

considered support for the deterministic hypothesis. 

If the correlation dimension continues to increase 

with embedding dimension, then the reconstructed 

attractor essentially fills whatever space it is 
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embedded in.  This is a common characteristic of 

random systems. 

In addition to requiring the data to be spatially 

correlated, for this analysis the correlation 

dimension must converge to a small value.  For this 

thesis, values less than five are considered small. 

Note that the dimension of the attractor can not be 

larger than the number of independent variables in the 

system which generated the data.  For this reason, the 

minimum number of variables required to model the 

system is given by the smallest integer greater than 

the correlation dimension.  The choice of five for a 

maximum correlation dimension is somewhat arbitrary 

and is chosen based on a belief that systems with more 

than five independent variables are too complex to 

attempt to model using the methods in this thesis. 

One final use of the correlation dimension is that 

non-integer values of this dimension indicate that the 

attractor may have a fractal structure which is a 

common symptom, although no guarantee of, a chaotic 

system. 

The next diagnostic tool applied uses Micro TSP 

[15], a time series analysis package, to compute the 
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autocorrelations and partial correlations for the data 

set.  Briefly, the ith  autocorrelation describes how 

much a given value of the series can be explained 

using the value of the series lagged i periods 

including the effects of all previous lag periods. 

The ith  partial correlation provides similar 

information but is calculating with the effects of all 

other lag variables held constant.  The correlation 

dimension describes the spatial correlation while the 

autocorrelations describe the dynamic correlation of 

the data.  A complete treatment of this subject is 

found in [1]. 

If a deterministic structure exists in the data, 

it should be seen as relatively strong values for the 

autocorrelation function.  Strong values of the 

autocorrelations are therefore considered evidence in 

support of the deterministic hypothesis.  One other 

benefit of the autocorrelation function is it may 

suggest a more appropriate lag period for which to 

generate a phase portrait.  If, for example, the 

autocorrelation function shows strong correlation with 

the variable lagged three periods and little 

correlation with the first two lags, it is appropriate 
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to generate a phase portrait using a lag period of 

three.  Finally, the correlation dimension gives 

information about how many variables to include in a 

forecasting model; the lag periods with the strongest 

autocorrelations are considered the best choices to 

include in the model. 

The tests described to this point have been 

attempts to find support for the deterministic 

hypothesis.  The next diagnostic tool, estimation of 

the largest Lyapunov exponent tests not for structure 

but for the presence of chaos.  As described earlier, 

the largest Lyapunov exponent must be positive for the 

system to have sensitive dependence on initial 

conditions.  If the largest Lyapunov exponent is found 

to be negative, then the data is not chaotic and the 

method described here is not appropriate for modeling 

that data.  Therefore, a forecasting model is built 

only for systems which have a positive largest 

Lyapunov exponent.  The BASIC computer code for 

estimating the largest Lyapunov exponent is given in 

Appendix C. 

The final diagnostic test applied extends what 

Peters calls the Shuffle Diagnostic to include not 
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only the Hurst coefficient but also the 

autocorrelations. 

Peters recommends shuffling the data set and 

recomputing the Hurst coefficient (the Shuffling 

diagnostic) to determine whether the original Hurst 

coefficient is due to some statistical phenomena of 

the data [16, p.75].  If the Hurst coefficient for the 

shuffled data is significantly closer to the expected 

value of H  for a random process, the apparent 

structure may have been destroyed by the shuffling 

process and this supports the deterministic 

hypothesis.  If the coefficient does not change after 

shuffling, the data should be examined to attempt to 

determine another explanation for the anomalous value 

obtained. 

This same idea is then applied using the 

autocorrelations.  If the autocorrelations observed 

for the original data set are no longer present in the 

shuffled data, then the original autocorrelations are 

most likely due to a deterministic structure and not a 

statistical phenomena.  A significant reduction in the 

autocorrelations after shuffling is then considered 

support for the deterministic hypothesis. 
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For the analysis in this paper, the shuffling is 

accomplished by first importing the data into 

Microsoft Excel 4.0, a spreadsheet software package. 

Then, a sequence of random numbers is generated and 

listed with the time series as pairs.  These pairs are 

then sorted in ascending order according to the value 

of the random number.  To reduce the possibility of 

artificial structure being induced by shuffling 

according to pseudo-random numbers, the shuffling is 

accomplished twenty times. 

With the above tests completed, the analysis now 

becomes somewhat more subjective and qualitative.  All 

of the results are considered and a determination is 

made whether the results support the hypothesis that 

the data are the result of a low-dimensional 

deterministic system.  In summary, results which 

support the deterministic hypothesis include: (1) a 

Hurst coefficient significantly different from the 

value for a random process which moves close to this 

value after shuffling, (2) a low (less than five) 

correlation dimension, (3) strong autocorrelations 

which are then no longer present after shuffling, and 

(4) a positive largest Lyapunov exponent.  If there is 
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support for the deterministic hypothesis, a 

deterministic model is built using the method 

described in the following section. 

Modelina the Data 

The correlation dimension gives the first input 

to the form of the model to be tried.  As mentioned 

earlier, the model must have a number of variables no 

less than the correlation dimension.  The variables 

considered will be lags of the time series.  That is, 

the model is of the form xt  = f(xt_ai, xfc.a2, ..., -*t-an) 

with 0<a1<a2 ••• <an    and n  is greater than or equal 

to the correlation dimension.  Here the notation 

x*.  =• is used to represent the lags, that is the value 

of the time series lagged ai periods.  The lag periods 

with the strongest autocorrelations are the first 

choice of variables to include in this model. 

To choose an initial regression model for the 

selected variables, phase portraits for the lag 

periods used are generated and visually analyzed in 

hopes of finding a recognizable pattern.  Clearly, 

higher dimensional systems pose greater difficulty for 

this graphical analysis. 
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The best standard model, such as a polynomial, 

trigonometric function, exponential, conic section or 

a combination (additive or multiplicative) of these, 

suggested by the graphical analysis is tried for the 

first regression model.  For example, if the phase 

portrait for the first lag variable looks like a 

parabola, then the first regression model tried is: 

xfc = ßo + ßr
xt-i + ß2'xt-i2 

This equation is then applied in a linear regression 

using MicroTSP [15] to estimate the regression 

coefficients.  This equation, with the values of the 

regression coefficients inserted, then is the 

forecasting model. 

As a more sophisticated example, suppose the 

phase portrait has the basic shape of an ellipse.  The 

regression equation in this case is derived from the 

general equation for an ellipse: 

A-x2  + B-x-y + C-y2 + D-x + E-y + F  = 0 

The regression equation is derived by first 

substituting xt for y and xt_x  for x. Then the y
2  term 
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is moved to the right side of the equation.  Finally, 

since the equation is not changed by dividing by a 

non-zero constant, the equation is divided by -C and, 

reordering terms, the regression model is given by: 

Xt
2   = ßo + ßl-Xt+ ß2-Xt_l

2 + ß3"Xt-l + fa-XtXt-l 

As in the previous example, the least squares 

regression returns the estimated coefficients.  In 

this case, the quadratic formula must be applied to 

solve explicitly for xt  as a function of xt_x  when 

building the forecasting model.  The forecasting model 

for this system is: 

1 

■t ~ xt = — ■ -b ±  (b2-4-a-c)0-5 

2-a 

a = 1.0 
b = -  (ßi + ß4-xt_ i) 

C  =  - (ßo + ß2"xt-l2 + ß3-xt-l) 

When to use the positive and negative values of the 

square root in the forecasting example depends on the 

system and this issue is discussed by way of example 
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in Chapter 4 during the analysis of the Rossler 

equations. 

When the least squares regression is done, a 

series of residuals is generated.  These residuals are 

the difference between the actual values and the 

values estimated by the regression.  These residuals 

are tested for autocorrelations to look for ways to 

improve the original regression equation.  If no 

autocorrelations are present, the residuals are 

essentially random values and it is likely no 

improvements can be made to the original model.  If 

autocorrelations are present, the next step is to 

generate a phase portrait for the residual series 

using the best lag periods suggested by the 

autocorrelations.  This information is then used in 

the same way the original model was built to add terms 

to the original regression equation.  As an example of 

this, consider again the earlier example of a phase 

portrait with the shape of a parabola.  If the phase 

plot of the residual series using a lag period of two 

is close to a straight line, the new regression model 

becomes: 

xfc = ßo + ßr*t-i + P2'*t-l
2 + P3-*t-2 
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This process continues until at least one of the 

following conditions exist: (1) the residuals are no 

longer autocorrelated, (2) the fit is considered 

adequate, or (3) the residuals give no suggestions for 

improvement of the model.  For the second case, the 

fit is considered adequate if the R-squared value for 

the regression is close to 1.0.  The value, R-squared, 

is a measure of the goodness of fit of the regression. 

If the R-squared value is 1.0, the regression fits the 

data perfectly.  An R-squared value of zero indicates 

the regression fits the data no better than a constant 

function equal to the sample mean [15]. in this 

thesis, an R-squared value is considered close to 1.0 

if it is greater than 0.99. 

Testing the Model 

The goal of this research is to show that, for 

some time series, it is more effective to forecast the 

data using a deterministic chaotic model than using 

standard time series techniques.  The standard time 

series model used for comparison is a Box-Jenkins 

ARIMA model.  Only the results of building the ARIMA 

model are included here and for discussion of this 

topic the reader is referred again to [1]. 
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To accomplish this test of effectiveness, the 

chaotic deterministic model is used to forecast the 

series.  The starting point for the forecast is the 

end of the data set used in building the model.  Since 

the generating functions for the data are known, the 

data set can be extended and the forecast values are 

then compared to the extended actual values. 

The data set is also modeled using an ARIMA model 

and this model is used to forecast the data starting 

at the same point as for the chaotic deterministic 

model forecast.  To compare the predictive power of 

the two models, the number of iterations before the 

predicted value differs from the actual by more than a 

subjectively determined "significant" amount is 

counted.  The deterministic model is considered more 

effective in forecasting if the number of iterations 

before "divergence" is smaller than that for the ARIMA 

model,  in this thesis, the subjectively determined 

"significant" amount depends on the system being 

studied but is on the order of ten percent of the 

maximum range of the series. 
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Summary 

This chapter described how to apply the tools 

presented in Chapter 2 as well as others introduced in 

this chapter to build and test a deterministic model 

to forecast a data set which is suspected to be 

chaotic.  In the next chapter, this method is applied 

to time series generated from three known chaotic 

functions. 
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CHAPTER  FOUR 

APPLICATION 

Introduction 

This chapter contains the details of applying the 

previously described analysis to sets of data 

generated from three known chaotic functions.  The 

functions used to generate this data are the logistic 

equation, the Henon equations and the Rossler 

equations. 

Logistic Function 

The first sample data sets analyzed were 

generated from the logistic equation, that is 
xt+i = ^ 'xt'0-  ' xt)-     This function is analyzed first 

because it is the simplest of those studied in this 

chapter.  The system is be studied for two values of 

the parameter k,   k =  3.8 and k =  3.92.  These are both 

in the chaotic regime and the two sets are chosen to 

demonstrate that, while the behavior of the system is 

extremely sensitive to parameter changes, the analysis 

method is robust.  One thousand data points are used 

since this number of points lessens the risk of 

studying some transient behavior pattern that is not 
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typical while keeping reasonable the computation time 

for the data intensive tests that follow.  Each step 

of the analysis is done for both parameter values 

before proceding to the next step.  The decision to 

present the two this way rather than as two 

independent analyses is intended to facilitate 

comparison. 

The first step in this analysis is to generate a 

time plot and a phase portrait in two dimensions using 

a lag of one period.  These plots deserve at least a 

cursory inspection, looking for any obvious trends, 

patterns and cycles.  The time plots for the two 

parameter values shown in Figure 4.1 and Figure 4.2 

show some signs of patterns but yield no obvious 

evidence of structure. 

1.0 

0.8 

0.4 

0.0   - i i i i I i i i i | i ^■^■^-^*^^^■*-r*^*■^' ■ 1 I I I IT^w^T^^^T^^WT 
10   15   20   25   30   35   40   45   50   55 

I   Xf  I 
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Figure 4.1     Time plot  for X =  3.8 
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Figure  4.2 Time plot for X =  3.92 

A comparison of the two time plots shows some 

similarity but the behavior of the system is clearly 

sensitive to parameter changes. 

The phase portraits given in Figure 4.3 and 

Figure 4.4 definitely show strong evidence of 

structure.  Additionally, while the time plots showed 

only a hint of similarity, the phase portraits appear 

nearly identical.  These plots are key tools for 

building the dynamical models and their usefulness is 

demonstrated later in the analysis when the models are 

built and tested. 
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Figure  4.3 Phase Portrait for  A, = 3.8 
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Figure 4.4     Phase portrait for X = 3.92 
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The results of calculating the Hurst coefficient 

for both the original and shuffled data sets as well 

as the correlation dimension and largest Lyapunov 

exponent are summarized in Table 4.1. 

Hurst coefficient 0.437 0.441 
Hurst coefficient for 
scrambled data set 

0.492 0.514 

Correlation dimension 0.89 0.94 
Largest Lyapunov exponent 0.311 0.271 

Table  4.1 Summary of Diagnostic tools 

All of these results support the deterministic 

hypothesis.  Comparing, both show that shuffling 

appears to have removed the antipersistence and both 

may have a low-dimensional structure.  The Hurst 

coefficients show that for A, = 3.92, the time series 

is "more random" and the Lyapunov exponents show that 

the series for X =  3.8 is "more chaotic". 

The time series' are now tested for auto- 

correlations and partial correlations using MicroTSP 

[15] .  The results are given in Table 4.2 and 

Table 4.3.  Both show strong dependence on the lag-one 

variable and some dependence on the lag-two variable. 
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Autocorrelation       Partial Correlation            AC        PAC     Q-Stat    Prob 

■■■ji 1  -0.596 -0.596   355.85   0.000 
•L 2   0.195 -0.248   394.15   0.000 

■F i 3   0.009   0.011    394.23   0.000 4 4 -0.121  -0.100   408.86   0.000 

-t i 5   0.136   0.003   427.42   0.000 
4 6 -0.148 -0.097   449.58   0.000 
ii 7   0.071  -0.089   454.71    0.000 
i i i 8   0.017   0.006   455.01   0.000 
i i i 9 -0.010   0.067   455.10   0.000 
i i i 10   0.021   0.046   455.55   0.000 

t i 11 -0.023   0.012   456.10   0.000 

■ 12   0.039   0.042   457.64   0.000 

Table  4.2 Autocorrelations for X  = 3.8 

Autocorrelation       Partial Correlation            AC        PAC     Q-Stat    Prob 

Hri> 1  -0.423 -0.423   179.14   0.000 3 2 -0.102 -0.342   189.59   0.000 
, J' 3   0.224   0.030   240.17   0.000 

4 4 -0.211  -0.147   285.13   0.000 
i + 5   0.180   0.112   317.71    0.000 
i| •F 6 -0.042   0.025   319.48   0.000 

in 7 -0.093 -0.017   328.28   0.000 
i 0   0.113   0.002   341.15   0.000 

9 -0.061  -0.001    344.93   0.000 
i| ii 10 -0.041  -0.074   346.66   0.000 
i 4 11    0.033 -0.068   347.77   0.000 
i \ 12   0.015   0.016   347.99   0.000 

Table  4.3 Autocorrelations for X  = 3.92 

Both are evidence to support the deterministic 

hypothesis. Additionally, no other lags show a 
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stronger dependence than is found on the first lag and 

this indicates that the first lag period is the most 

appropriate choice for building phase portraits and 

also dynamical models. 

The autocorrelations and partial correlations for 

the shuffled data sets shown in Table 4.4 and Table 4.5 

indicate that the shuffling process appears to have 

removed the structure in both cases and these results 

also support the deterministic hypothesis. 

Autocorrelation       Partial Correlation AC PAC     Q-Stat    Prob 

1 0.010 0.010 0.1059 0.745 
2 -0.014 -0.014 0.3092 0.857 
3 0.008 0.008 0.3745 0.945 
4 0.050 0.049 2.8616 0.581 
5 -0.071 -0.072 7.8924 0.162 
6 -0.002 0.001 7.8973 0.246 
7 -0.005 -0.007 7.9201 0.340 
8 -0.045 -0.046 9.9207 0.271 
9 -0.008 0.000 9.9855 0.352 

10 -0.001 -0.007 9.9870 0.442 
11 -0.001 -0.000 9.9892 0.531 
12 0.005 0.009 10.013 0.615 

Table  4.4 Autocorrelations for shuffled data 
for X  = 3.8 
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Autocorrelation       Partial Correlation            AC        PAC     Q-Stat    Prob 

1    0.004   0.004   0.0138   0.906 
2   0.014   0.014   0.2069   0.902 

il i n ■ 3 -0.045 -0.045   2.2029   0.531 
-1 ■ 4 -0.030 -0.030   3.1016   0.541 
■1 - 5 -0.024 -0.023   3.6801    0.596 

6 -0.001  -0.002   3.6887   0.720 
7 -0.011  -0.013   3.8061    0.802 
8 -0.011    0.014   3.9397   0.863 
9   0.016   0.015   4.1878   0.899 

10 -0.018 -0.020   4.5168   0.921 
11  -0.033   0.036   5.6445   0.896 

' i ■ I 12   0.061   0.062   9.3865   0.670 

Table  4.5 Autocorrelations for shuffled data 

for X =  3.92 

The Hurst coefficient for the parameter value 

X =  3.8 is estimated to be 0.437.  This indicates that 

the system is antipersistent.  The web diagram (Figure 

4.5) supports this conclusion as well.  The anti- 

persistence can be seen by noting that upward 

movements are more likely to be followed by downward 

movements and vice versa.  For the parameter value 

X =  3.92 the estimated Hurst coefficient is 0.441, 

again indicating antipersistence but to a lesser 

degree.  This also can be seen in the web diagram 

(Figure 4.6) since upward movements are still more 

frequently followed by downward movements and vice 
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Figure 4.5     Web diagram for X =  3.8 
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Figure 4.6     Web  diagram for X =  3.92 
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versa, but the ratio of trend reversing to trend 

reinforcing movements seems to be smaller. 

The correlation dimensions show it may be 

possible to model both systems using only one variable 

and both the phase plots and autocorrelations show no 

evidence of a better lag variable than a lag of one 

period.  Therefore, supported by this evidence, the 

first model for both systems is the one suggested by 

the phase plots, a lag-one quadratic: 

Xfc = ßo+ ßi- xt-i+ßrxt-i2 

The results of the regression using Micro TSP 

[15] are shown for k =  3.8 in Table 4.6 and for 

k  = 3.92 in Table 4.7.  Note that both models fit their 

respective data sets with R-squared of 1.00 and the 

original coefficients (3.8 and 3.92) are exactly 

recovered.  The data sets used in this analysis are 

rounded to six significant figures and therefore the 

constant terms in both regressions are smaller than 

the possible rounding error.  For this reason, the 

dynamical models are built using a ß0 coefficient of 

zero. 
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Variable Coefficient Std. Error     T-Statistic Prob. 

(Xt-1)*2 
Xt-1 

C 

-3.800000 
3.800000 
-1.11E-07 

4.14E-07      -9178322. 
4.87E-07       7805314. 
1.26E-07      -0.880403 

0.0000 
0.0000 
0.3789 

R-squared 
Adjusted R-squared 
S.E. of regression 
Sum squared resid 
Log likelihood 
Durbin-Watson stat 

1.000000 
1.000000 
6.87E-07 
4.71 E-10 
12760.27 
1.619505 

Mean dependent var 
S.D.dependentvar 
Akaike info criterion 
Schwartz criterion 
F-statistic 
Prob(F-statistic) 

0.639909 
0.249087 

-28.37796 
-28.36323 
6.55E+13 
0.000000 

Table 4.6 Regression output  for X =  3.8 

Variable Coefficient Std. Error      T-Statistic Prob. 

fXt-ip -3.920000 6.13E-09      -6.39E+08 0.0000 
Xt-1 3.920000 6.93E-09       5.65E+08 0.0000 

C 7.26E-10 1.60E-09        0.454303 0.6497 

R-squared 1.000000 Mean dependent var 0.583984 
Adjusted R-squared 1.000000 S.D.dependentvar 6.306489 
S.E. of regression 1.38E-08 Akaike info criterion -36.20071 
Sum squared resid 1.89E-13 Schwartz criterion -36.18599 
Log likelihood 16684.42 F-statistic 2.48E+17 
Durbin-Watson stat 1.963275 Prob(F-statistic) 0.000000 

Table  4.7 Regression output  for  A, = 3.92 

Since the generating functions are completely 

recovered for both cases, the models are not used to 

forecast the series and count iterations until 

divergence.  The only necessary step to show the 
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effectiveness of the dynamical models is to 

demonstrate that the same effectiveness can not be 

achieved using ARIMA models. 

The result of using MicroTSP [15] to build the 

ARIMA models are shown below in Table 4.8 and 

Table 4.9. 

Variable Coefficient Std. Error T Statistic Prob. 

C 0.640894 0.001981 323.5075 0.0000 
AR(1) 0.054882 0.173685 0.315986 0.7521 
AR[2) 0.177544 0.058182 3.051560 0.0023 
MA(1] -0.885156 0.175200 -5.052256 0.0000 
MA(2) 0.141811 0.104945 1.351285 0.1769 

R-squared 0.440328 Mean dependent var 0.640494 
Adjusted R-squared 0.438074 S.D. dependentvar 0.248524 

S.E. of regression 0.186298 Akaike info criterion -3.355819 
Sum squared resid 34.46398 Schwartz criterion -3.331241 
Log likelihood 263.4528 F-statistic 195.3137 
Durbin-Watson stat 2.010500 Prob(F-statistic) 0.000000 

Table  4.8 ARIMA model regression for X = =   3.8 
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Variable Coefficient       Std. Error      T-Statistic Prob. 

c 0.584668 0.004078 143.3781 0.0000 
AR[1] -0.898384 0.067144 -13.38000 0.0000 
AR[2J -0.330551 0.052807 -6.259585 0.0000 
MA(1) 0.348409 0.069099 5.042166 0.0000 
MA(2) -0.233164 0.062674 -3.720246 0.0002 

R-squared 0.294319 Mean dependent var 0.584882 
Adjusted R-squared 0.291476 S.D. dependentvar 0.306118 
S.E. of regression 0.257671 Akaike info criterion -2.707145 
Sum squared resid 65.92967 Schwartz criterion -2.682567 
Log likelihood -60.23543 F-statistic 103.5378 
Durbin-Watson stat 1.998270 Prob(F-statistic) 0.000000 

Table  4.9 ARIMA model  regression for k  = 3.92 

The plots given in Figure 4.7 and Figure 4.8 show 

the ARIMA forecast values and the actual extended 

series values for the two parameter values. 

xt Xt Forecast 

Figure  4.7 ARIMA forecast  and actual  values 
for X  = 3.8 
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Figure  4.8 ARIMA forecast  vs.   actual  values 

for X =  3.92 

The difference between these two values is 

plotted in Figure 4.9 for X =  3.8 and in Figure 4.10 

for X =  3.92. 
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Figure 4.9 Plot of divergence for X =  3.8 
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Figure  4.10 Plot  of Divergence for  A, = 3.92 

From this result, it is clear that this function 

resists forecasting with ARIMA models.  The difference 

between the forecast value and the actual value is 

larger than twenty percent of the range of the series 

for even the first iteration in the case of A, = 3.8. 

For the case of X =  3.92 the forecast is better but 

still differs by more than ten percent of the range 

after only two iterations.  This percentage of the 

maximum value is in some sense a percentage error. 

These results show that the function is significantly 

more effectively forecast using deterministic chaotic 

models. 
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Henon Equations 

Data generated from the Henon equations are 

examined next in the analysis.  The equations used to 

generate the data set are: 

xt+i = 1-a-xt2+ Vt 

Yt+i=b-xt 

The classic parameters, a = 1.4 and b  = 0.3, are used 

with the initial point (0.5,0.5).  The time series of x- 

values are analyzed.  Note that the y-values are 

simply the x-values scaled by a constant value. 

Therefore, demonstrating the procedure for the x- 

values also demonstrates the procedure for the y- 

values. 

The time plot (Figure 4.11) shows no readily 

apparent structure. 
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Figure  4.11 Time plot 

The structure in the data becomes much more 

apparent in the phase portrait (Figure 4.12). 

Figure  4.12 Phase portrait 
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This plot shows strong evidence of structure although 

the structure seems more complex than that previously 

observed for the logistic equation. 

The result of computing the Hurst coefficient, 

the correlation dimension and the largest Lyapunov 

exponent are summarized in Table 4.10. 

Hurst coefficient 

Hurst coefficient for 
scrambled data set 
Correlation dimension 

Largest Lyapunov exponent 

0.435 

0.622 

1.23 

0.432 

Table  4.10  Summary of Diagnostic tools 

These results all support the deterministic 

hypothesis.  The most questionable result is the Hurst 

coefficient for the shuffled data.  As described 

earlier, the expected H  for a random process with 1,000 

data points is 0.558.  Shuffling the data moves H 

closer to this value but not within the ±0.06 window 

used to determine significance.  The data set, when 

shuffled an additional twenty times, has a Hurst 

coefficient of 0.506 which is closer to the value 

anticipated.  With this result, the shuffling 
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diagnostic for H  seems to more strongly support the 

deterministic hypothesis. 

Probably the most significant result here is the 

correlation dimension.  While the correlation 

dimension for both parameter values of the logistic 

equation showed it may be possible to model the system 

with only one independent variable, the results shown 

above indicate that the model for this data set must 

include at least two independent variables. 

A relatively strong dependence on the lag one and 

three periods is observed in the calculation of 

autocorrelations (Table 4.11).  Additionally, there is 

a weaker dependence on lags two and four through six. 

Autocorrelation       Partial Correlation AC PAC     Q-Stat    Prob 

1 -0.302 -0.302 91.610 0.000 
2 0.252 0.177 155.47 0.000 
3 -0.359 -0.276 284.84 0.000 
4 0.008 -0.215 284.90 0.000 
5 -0.161 -0.124 310.84 0.000 
6 -0.045 -0.229 312.87 0.000 
7 0.149 0.056 335.21 0.000 
8 -0.016 -0.032 335.45 0.000 
9 0.151 -0.006 358.65 0.000 

10 -0.074 0.012 364.26 0.000 
11 0.029 -0.035 365.09 0.000 
12 -0.065 0.023 369.39 0.000 

Table 4.11    Autocorrelations 
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This is evidence to support the deterministic 

hypothesis and also supports the choice of the lag one 

variable for the initial phase portrait.  This choice 

of the lag one variable is based on the partial 

autocorrelations since these essentially treat each 

lag variable separated from the effects of the others. 

This is why the lag one variable, and not the lag 

three variable which has a higher autocorrelation, is 

chosen. 

The autocorrelations are no longer present in the 

shuffled data set as is shown in Table 4.12.  This 

result also supports the deterministic hypothesis. 

Autocorrelation       Partial Correlation            AC        PAC     Q-Stat    Prob 

1    0.024   0.024   0.5728   0.449 
2   0.030   0.030   1.4919   0.474 
3   0.028   0.027   2.2779   0.517 
4   0.027   0.025   3.0039   0.557 
5 -0.022 -0.025   3.4910   0.625 
6   0.038   0.037   4.9240   0.554 
7   0.015   0.013   5.1535   0.641 
8   0.008   0.006   5.2185   0.734 
9 -0.014 -0.016   5.4285   0.795 

10   0.022   0.019   5.9292   0.821 
11    0.038   0.039   7.3704   0.768 
12 -0.036 -0.039   8.6517   0.732 

Table  4.12 Autocorrelations for shuffled data 
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The phase portrait for the data using a lag 

period of one suggests the same quadratic model used 

for the logistic equation as a starting point: 

xt = ßo +ßr*t-i +P2"xt-i2 

There appears to be more than a simple lag-one 

quadratic in the phase portrait and the correlation 

dimension suggests at least one more independent 

variable is required to model the data.  The hope is 

that the quadratic model is "close" and the residuals, 

the difference between actual and fitted values, from 

the regression will uncover the additional factors. 

Variable Coefficient Std. Error T-Statistic Prob. 

fXt-ip -1.348170 0.013349 -100.9920 0.0000 
Xt-1 -0.098457 0.009237 -10.65911 0.0000 

C 1.077341 0.009947 108.3128 0.0000 

R-squared 0.919170 Mean dependent var 0.269063 
Adjusted R-squared 0.919008 S.D. dependentvar 0.713320 
S.E. of regression 0.203004 Akaike info criterion -3.186057 
Sum squared resid 41.04592 Schwartz criterion -3.171322 
Log likelihood 176.9161 F-statistic 5663.102 
Durbin-Watson stat 1.881319 Prob(F-statistic) 0.000000 

Table  4.13 Regression output 
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The fit in Table 4.13 is good but the R-squared 

value is not close to 1.0, therefore the next step is 

to calculate the autocorrelations for the residual 

series to see if additional structure exits.  The 

autocorrelations are shown in Table 4.14 

Autocorrelation       Partial Correlation            AC        PAC     Q-Stat    Prob 

i 

i 

i 

i 

i 1 
1 0.057   0.057   3.2026   0.074 
2 0.167   0.164   31.208   0.000 
3 -0.379 -0.408   175.15   0.000 
4 -0.165 -0.160   202.59   0.000 
5 -0.227 -0.082   254.59   0.000 
6 -0.057 -0.165   257.86   0.000 
7 0.146   0.112   279.35   0.000 
8 0.085   0.045   286.64   0.000 
9   0.165   0.000   314.15   0.000 

i 10 -0.025   0.013   314.80   0.000 
i 

\ 

11  -0.000 -0.024   314.80   0.000 
i 12 -0.065   0.055   319.04   0.000 

Table  4.14 Autocorrelations for residual  series 

The strongest autocorrelation is in the third lag 

period.  A plot of the residuals against xt lagged 

three periods (Figure 4.13) shows similar complexity 

to the original phase portrait and suggests looking at 

other lag periods.  The next strongest autocorrelation 
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X    lagged 3 periods 
t 

Figure  4.13 Residual  vs.   lag  three variable 

is in the second lag period.  The plot of the 

residuals against xt lagged two period is given in 

Figure 4.14. 

X     lagged 2 periods 

Figure 4.14     Residual  vs.   lag  two variable 
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This shows strong evidence of the presence of a 

linear lag two term. 

Based on the information in Figure 4.14 and the 

fact that the correlation dimension indicates the need 

for at least two independent variables, the original 

lag one quadratic model is modified to include the 

linear term in the second lag, that is the second 

regression model is: 

Xt = ßo + ßl-Xfc-l + ß2-*t-l
2 + ß3-*t-2 

The result of the regression to estimate the 

coefficients in the new model is shown in Table 4.15. 

Variable Coefficient Std. Error T-Statistic Prob. 

(Xt-1]*2 -1.400000 2.50E-07 -5801417. 0.0000 
Xt-1 4.39E-07 1.81E-07 2.424900 0.0155 
Xt-2 0.300000 1.77E-07 1694852. 0.0000 

C 1.000000 1.90E-07 5255166. 0.0000 

R-squared 1.000000 Mean dependent var 0.268180 
Adjusted R-squared 1.000000 S.D. dependentvar 0.713131 
S.E. of regression 3.77E-06 Akaike info criterion -24.97267 
Sum squared resid 1.41 E-08 Schwartz criterion -24.95301 
Log likelihood 11049.26 F-statistic 1.19E+13 
Durbin-Watson stat 2.416986 Prob(F-statistic) 0.000000 

Table  4.15 Regression output for second model 
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This result has an R-squared value of 1.0 and 

therefore no further improvements are attempted.  The 

coefficient of the linear term in lag-one is smaller 

than the possible rounding error for the data set 

which is rounded to six significant figures and 

therefore is considered to be zero. 

Note that if the formula for the y-values in the 

generating equation is substituted into the formula 

for the x-values the result has the form of the second 

regression model.  That is, the system of equations: 

xt+i = i-a-*t
2 + Vt 

yt+1=b-xi 

can be rewritten as 

xt+1 = l-a-xfc
2+ yt 

yt=
b-xt-i 

And then with substitution becomes: 

xt+1=l-a-xfc
2 + b-Xfc.! 
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Using this representation of the system of 

equations shows that coefficients resulting from the 

regression are exactly those used to generate the 

data. 

As with the analysis of the logistic equation, 

since the generating equation is completely recovered, 

the only step remaining to verify the effectiveness of 

this method is to show the same result does not occur 

using the ARIMA model. 

The regression result of building the ARIMA model 

is given in Table 4.16. 

Variable Coefficient Std. Error T-Statistic Prob. 

C 0.268556 0.008350 32.16327 0.0000 
AR(1J 0.559630 0.064985 8.611734 0.0000 
AR[2J 0.127423 0.054981 2.317575 0.0207 
AR[3J -0.443136 0.031296 -14.15928 0.0000 
MA(1j -0.885995 0.070384 -12.58799 0.0000 
MA(2) 0.209848 0.069589 3.815527 0.0026 

R-squared 0.255736 Mean dependent var 0.269153 
Adjusted R-squared 0.251980 S.D.dependentvar 0.712827 
S.E. of regression 0.616510 Akaike info criterion -0.961360 
Sum squared resid 376.6643 Schwartz criterion -0.931843 
Log likelihood -929.4435 F-statistic 68.10321 
Durbin-Watson stat 1.985491 Prob(F-statistic) 0.000000 

Table  4.16 Regression result for ARIMA model 
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This model is then used to forecast the data and 

the plot of the actual and forecast values is given in 

Figure 4.15 below.  The divergence is calculated and 

this series is plotted in Figure 4.16.  The range for 

the original series is approximately 3.0 and, using 

1000 1004    1008    1012    1016    1020    1024 

Yt Yt Forecast 

Figure  4.15 Forecast and actual  values 

1000  1002 1004 1006  1008 1010 1012  1014 1018 1018 1020 1022 1024 

I      DELTA    I 

Figure  4.16 Divergence of forecast 
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this, the forecast value differs from the actual by 

thirty percent of the range in the first iteration. 

This result confirms that the data is more 

effectively forecast using a deterministic chaotic 

model. 

Rossler equations 

The first two examples used discrete maps to 

generate the series of data that were analyzed.  This 

example uses a system of differential equations.  The 

system is known as the Rossler equations and is given 

by: 

x'(t) = -(y(t) + z(t)) x(0) = -1 

y'it) =  x(t) + ay(t) y(0) = 0 

z'(t) = b + x(t)z(t) - cz(t)      z(0) = 0 

The parameter values are a = 0.2, b =  0.2, and 

c = 5.7.  These are "classic" parameter values and are 

known to lead to chaotic motion.  To build a time 

series, a fourth order Runge-Kutta method is used to 

estimate the value of the system in time using a time 

step of 0.001 for the numerical approximation.  The 

goal here is to get a set of one thousand data points 

which reasonably represents the attractor.  Using only 
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the first thousand points with such a small step size 

only shows a small portion of the attractor. 

Increasing the step size is not a good solution since 

accuracy in the numerical method is sacrificed.  The 

method used here, which preserves accuracy in the 

numerical algorithm, is to sample the points generated 

by the numerical method at a time step of 0.15.  This 

value is chosen based on experimentation with various 

values and seems to create a time series which is 

representative of points on the attractor. 

Since the method described in this thesis focuses 

on a scalar valued time series, only the x-values are 

analyzed. The choice of this series is arbitrary and 

the description of analysis which follows is believed 

to be typical of the results when applying the method 

to the y  and z-values as well. 

To obtain a better representation of the 

attractor, the data set starts at t = 15.  This omits 

any early transient type behavior.  To accomplish this 

the method described above was used to generate 2,000 

data points and the first set of 1,000 discarded. 

The time plot for the generated data set is shown 

in Figure 4.17 below.  This plot shows evidence of 
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more structure than was observed in the earlier 

examples.  It seems clear there is probably a cycle 

but no stable period length or amplitude seem obvious, 
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Figure  4.17 Time plot 

Figure 4.18 shows the phase portrait for the 

Rossler x-values using a lag period of one (this 

corresponds to a time lag of t = 0.15) .  Here, as the 

points are plotted in phase space, they are connected 

to the previous point with a straight line.  This 

representation is then an approximation of the path 

followed by a point in phase space. 

85 



X 
t-1 

Figure  4.18 Phase portrait 

Using this method, it appears the path followed is 

roughly elliptical and this suggests use of the 

elliptical model described in Chapter 2.  Before a 

model is built, the diagnostic tools are applied in 

search of further support for the deterministic 

hypothesis. 

The summary of results from diagnostic tools is 

given in Table 4.17 below.  The estimated Hurst 

coefficient is larger than 1.0.  Based on the results 
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observed for the strictly increasing sequence in 

Chapter 2, however, this estimate is believed to be 

larger than the actual value and the true value is 

probably close to, but less than 1.0. 

Hurst coefficient 1.04 
Hurst coefficient for 
scrambled data set 

0.563 

Correlation dimension 0.95 
Largest Lyapunov exponent 0.203 

Table  4.17 Summary of Diagnostic  tools 

The value of H  confirms the presence of persistent 

trends which is apparent in the time plot.  Another 

interesting aspect of using R/S  analysis is that, 

according to Peters, it can approximate the cycle 

length of a system in some cases.  In Figure 4.19, the 

values of log(R/S)n  are plotted against log(n).  This 

plot is approximately linear with slope 1.04 for 

values of n  less than fifty.  After this, the slope is 

close to zero.  This indicates that the approximate 

cycle length is fifty and this seems in agreement with 

the cycles seen in the time plot. 
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Figure  4.19 R/S plot 

The Hurst coefficient after shuffling is very- 

close to the expected H  for a random process and 

therefore supports the deterministic hypothesis.  The 

value of the correlation dimension shows it may be 

possible to model the system using only one variable. 

Finally, the low value of the correlation dimension 

and the positive largest Lyapunov exponent show the 

data may be the result of a low dimensional chaotic 

system and this is support for the deterministic 

hypothesis. 

The autocorrelations are shown in Table 4.18 and 

show strongest dependence on the first and second lag 



Autocorrelation       Partial Correlation AC PAC     Q-Stat    Prob 

0.984 
-0.943 
0.009 
0.073 

-0.089 
-0.141 
-0.106 
-0.074 
-0.068 
-0.069 
-0.065 
-0.054 
-0.038 
-0.026 
-0.049 
-0.100 
-0.076 
-0.013 
-0.012 
-0.039 
-0.039 
-0.023 
-0.014 
-0.014 
-0.014 
-0.011 
-0.005 
-0.000 
-0.002 
-0.009 
-0.009 
-0.004 
-0.005 
-0.015 
-0.025 
-0.030 

487.81 
931.72 
1309.8 
1609.3 
1826.7 
1967.2 
2043.2 
2072.7 
2077.0 
2078.6 
2099.0 
2156.6 
2265.1 
2432.1 
2658.8 
2940.2 
3265.9 
3621.3 
3989.2 
4351.6 
4691.2 
4993.2 
5246.5 
5444.9 
5587.2 
5677.8 
5725.3 
5742.5 
5744.2 
5746.5 
5764.5 
5811.4 
5897.0 
6026.8 
6201.5 
6417.1 

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

Table 4.18    Autocorrelations 
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periods.  The autocorrelations after shuffling are 

shown in Table 4.19 and show that the structure 

previously observed no longer exists.  Both of these 

results support the deterministic hypothesis and the 

choice of the first lag variable for use in the 

initial regression model. 

Autocorrelation       Partial Correlation            AC        PAC     Q-Stat    Prob 

1    0.006   0.006   0.0424   0.837 
2 -0.011  -0.011    0.1557   0.925 
3   0.011    0.012   0.2856   0.963 
4   0.001    0.001    0.2878   0.991 
5 -0.014 -0.014   0.4867   0.993 
6   0.030   0.030   1.3935   0.966 
7 -0.007 -0.008   1.4462   0.984 

i 

i ii 

8 0.046   0.047   3.5681    0.894 
9 0.020   0.019   3.9871    0.912 

10 0.022   0.023   4.4682   0.924 
11 -0.011    0.011    4.5903   0.949 
12 0.046   0.046   6.7820   0.872 

. - " 
13   0.002   0.002   6.7858   0.913 

•i - 1 14 -0.018 -0.019   7.1020   0.931 

Table  4.19 Autocorrelations for shuffled data 

Given the elliptical shape of the phase portrait 

and the strongest dependence on the first lag 

variable, the initial regression model used is the one 
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developed in Chapter 3 from the standard equation of 

an ellipse: 

xt
2 = ß0 + ßrxt+ ßrx^i

2 + ß3-xt-i + ß4-xt-xt_1 

Using this model, the coefficients found 

correspond to a hyperbola, rather than to an ellipse. 

This is determined by returning to the standard 

equation for an ellipse and evaluating B2-4-A-C.     For 

an ellipse, this value is negative.  In this analysis, 

the value for the resulting coefficients is small but 

positive. 

To look for an explanation for this unexpected 

result, a phase portrait plotting xt
2 against xt.^  is 

generated again using the technique of connecting 

sequential points.  This plot (Figure 4.20) is similar 

in nature to that for the Henon equations.  The key 

difference is that while the apparent axis of symmetry 

for the Henon phase portrait was vertical, here the 

apparent axis is not.  This indicates a similar model 

to that used for the Henon equations may be 

appropriate but a "mixed term", that is xt-xt.lf   is 

required to account for the changed axis of symmetry. 
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Figure  4.20 Phase portrait for xt 

Based on these results, the next regression model 

used is: 

xt
2 =  ßo + ßrxfc.!

2+ ß2-xfc-xt_1 + ß3-xt.i 

The result of this regression (Table 4.20) is 

much better than for the first model.  The next step 

is to look at the autocorrelations of the residual 

series to determine whether further attempts at 

improving the model are needed.  The autocorrelations 

for the residual series are shown in Table 4.21. 
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Variable Coefficient       Std. Error      T-Statistic       Prob. 

(Xt-1)*2 -0.863099 0.006424      -134.3543 0.0000 
Xt*XH 1.853676 0.006475       286.2768 0.0000 

Xt-1 0.067165 0.005995       11.20272 0.0000 
C 1.031850 0.043558       23.68894 0.0000 

R-squared 0.998873 Mean dependent var 28.21846 
Adjusted R-squared 0.998869 S.D.dependentvar 28.37966 
S.E. of regression 0.954343 Akaike info criterion -0.089457 
Sum squared resid 903.4837 Schwartz criterion -0.069763 
Log likelihood -1364.713 F-statistic 292966.4 
Durbin-Watson stat 0.323941 Prob(F-statistic) 0.000000 

Table  4.20 Regression for second model 

Autocorrelation       Partial Correlation AC PAC     Q-Stat    Prob 

1 0.838 0.838 700.88 0.000 
2 0.526 -0.588 977.56 0.000 
3 0.309 0.522 1073.1 0.000 
4 0.223 -0.317 1123.0 0.000 
5 0.199 0.281 1162.6 0.000 
6 0.184 -0.165 1196.7 0.000 
7 0.165 0.137 1224.1 0.000 
8 0.141 -0.087 1244.1 0.000 
9 0.116 0.067 1257.6 0.000 

10 0.094 0.043 1266.4 0.000 
11 0.077 0.040 1272.4 0.000 
12 0.068 -0.006 1277.0 0.000 
13 0.069 0.049 1281.8 0.000 
14 0.080 0.010 1288.3 0.000 

Table 4.21    Autocorrelations for residuals 
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The autocorrelations show evidence of remaining 

structure. After the first lag period, the strongest 

correlation is in the second lag variable.  This 

indicates the next step is to look at a plot of the 

residuals against the x-values lagged two periods. 

This plot is given in Figure 4.21. 

(0 

■g 
"w 
tr 

X 
t-2 

Figure 4.21     Plot  of residuals vs.xt lagged  two 

periods 
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The plot confirms the presence of structure but 

no obvious geometric model is suggested.  The most 

appropriate model suggested is again a parabola and 

based on this the revised regression model is: 

Xt
2 =  ßo + ßr*t-l2+ fcXfXfl +  ß3'*t-22 + 

$4-Xfxt-2  + ß5"*t-l + ße"xt-2 

The results of the regression using this model 

are shown in Table 4.22.  For this model, the R- 

squared value is very close to 1.0 and therefore no 

further improvements are attempted. 

Variable Coefficient Std. Error T-Statistic Prob. 

Xt*Xt-1 2.410422 0.006883 350.1933 0.0000 
Xt*Xt-2 -0.760266 0.007143 -106.4405 0.0000 
(Xt-ir2 -0.875962 0.010673 -82.07267 0.0000 
(X t-2H 0.215751 0.003579 60.27493 0.0000 

Xt-1 0.080216 0.009425 8.510708 0.0000 
Xt-2 -0.091101 0.009478 -9.611700 0.0000 

C 0.038175 0.014250 2.678922 0.0075 

R-squared 0.999926 Mean depen dent var 28.21846 
Adjusted R-squared 0.999926 S.D. dependent var 28.37966 
S.E. of regression 0.244540 Akaike info criterion -2.809754 
Sum squared resid 59.14177 Schwartz criterion -2.775289 
Log likelihood -7.005493 F-statistic 2233347. 
Durbin-Watson stat 1.137811 Prob(F-statistic) 0.000000 

Table  4.22 Regression for second model 
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The model used is for the series values squared. 

The next step, then, is to solve the model for xt  in 

terms of the other lags so it can be used to forecast 

the data.  This is done with the use of the quadratic 

formula as described in Chapter 3.  First, the model 

is rewritten as a quadratic in xt: 

xfc
2 - (ß2-xt.1 + ß4-xt.2 >xt - (ß0 + ßi-xt.!^ ß3-xt.2

2 

+ ß5'
xt-i + ße,xt-2) = o 

Then, applying the quadratic formula: 

xt = (1/2-a) • [- b  ± ((b)2 - 4-a-c))0-5] 

with a = 1 

b =  - (ß2-
xt-i + ß4"xt-2 ) 

c = -  (ß0 + ßi-xt-i
2+ ß3-Xfc-2

2 + ß5'*t-i + ße-xt-2) 

The result is an expression for xt in terms of only 

lag variables.  The best answer for which root to use 

is essentially a guess based on patterns in the data 

set. 

Looking at the time plot, there are intervals in 

which the trajectory is concave up and intervals in 
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which it is concave down.  Using the positive root in 

the forecasting equation above results in a concave 

down path in time space while the negative root yields 

a concave up path.  Therefore, the initial sign for 

the root is chosen based on whether the system appears 

to be in a concave up or concave down interval at the 

point the desired forecast begins.  The exact points 

defining the ends of these "intervals of concavity" 

are not easily determined.  The actual change in 

concavity occurs when the change in the slope reverses 

sign.  The difference between the present forecast 

value and the previous forecast value is used to 

approximate the slope of the forecast "function".  The 

difference between the current slope and the previous 

slope is used to approximate the change in slope.  The 

forecast is built, then, by initially choosing the 

sign of the root corresponding to the apparent 

concavity at the beginning of the forecast.  With the 

two values used to generate the forecast and the 

forecast itself, an initial change in slope is 

computed and this will be positive or negative.  When 

the change in slope is positive (negative) the sign of 

the root used in the forecast equation remains the 
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same until the change in slope becomes negative 

(positive) at which point the opposite sign of the 

root is used.  This sign will be used until the change 

in slope becomes positive (negative) again and so on. 

The resulting forecast is shown in Figure 4.22 below. 

Figure  4.22 Deterministic forecast 

The difference between the actual and the 

forecast values is plotted in Figure 4.23 below and 

shows that the deterministic model is able to forecast 

approximately fifty iterations before differing by 

more than 1.5 which is roughly ten percent of the 

98 



maximum value of the series.  This shows that it is 

reasonably accurate for one full "period". 

Figure  4.23 Divergence for deterministic model 

Table 4.23 shows the result of building the ARIMA 

model for the data.  The fit for this model is much 

better than the ARIMA models for the previous 

functions but the R-squared value is still lower than 

that for the deterministic model.  The result of 

forecasting using this model is shown in Figure 4.24. 

The model is very good for the first ten iterations 

but forecast values quickly diverge from the actual 

values after this. 
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Variable Coefficient Std. Error T-Statistic Prob. 

C 0.185443 0.173340 1.069824 0.2850 
AR[1] 3.231596 0.020687 156.2123 0.0000 
AR(2) -4.250126 0.057046 -74.50377 0.0000 
AR[3) 2.762021 0.057012 48.44627 0.0000 
AR[4) -0.757413 0.020648 -36.68260 0.0000 

R-squared 0.999795 Mean dependent var 0.191798 
Adjusted R-squared 0.999794 S.D.dependent var 5.311309 
S.E. of regression 0.076157 Akaike info criterion -5.144906 
Sum squared resid 5.747710 Schwartz criterion -5.120288 
Log likelihood 1153.900 F-statistic 1209640. 
Durbin-Watson stat 1.279234 ProbfF-statistic) 0.000000 

Table 4.23 Regressi on  for ARIMA model 

xt Xt Forecast 

Figure  4.24 Forecast and actual  values for ARIMA 
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The difference between the actual and forecast 

values is plotted in Figure 4.25 and shows the 

divergence is greater than 1.5 after approximately 

twenty iterations and more than twice that by the 

fortieth iteration. 

1000   1010   1020   1030   1040   1050   1060   1070 

I DELTA"! 

Figure  4.25 Divergence for ARIMA model 

This shows that again the deterministic model is 

more effective in forecasting the data. 
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CHAPTER     FIVE 

S UMMARY 

Overview 

This chapter consists of four sections.  The 

first section, results, is a brief summary of the work 

done in this study.  The second section contains 

conclusions drawn in light of the results presented in 

the first section.  The third section is titled 

recommendations and gives areas in which further study 

would likely lead to improvements on the methods 

presented in this thesis.  Extensions, the final 

section, briefly presents additional areas where the 

methods presented here should be applied and the 

effectiveness evaluated. 

Results 

The analysis presented in Chapter 4 began with a 

data generated from a very simple chaotic system, the 

logistic equation, which is a one dimensional system. 

The diagnostic tools effectively revealed the presence 

of deterministic chaos.  Using these tools with the 

method described in Chapter 3, the generating function 

was completely recovered in the model equation.  This 

result was far superior to that achieved with the 
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traditional ARIMA model.  Additionally, the analysis 

was consistent for both parameter values. 

With success achieved in a simple case, the 

analysis was then applied to data from a more 

complicated set of equations, the Henon equations, 

which come from a two dimensional system.  Again the 

diagnostic tools accurately identified the presence of 

deterministic chaos.  The model was not as easily 

built as was the case for the logistic equation. 

Following the steps outlined, however, still resulted 

in the complete recovery of the generating functions. 

As with the logistic equation, the deterministic model 

was far superior to the ARIMA model. 

To further test the method, data generated from a 

three dimensional set of differential equations, the 

Rossler equations, was studied.  The diagnostic tools 

continued to be effective but the modeling process was 

significantly more complicated.  Since the generating 

functions were differential equations, modeling the 

system with a discrete map did not reproduce the 

generating equations.  The discrete model was, 

however, still very effective in forecasting the data. 

Additionally, the deterministic forecast was more 
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effective in forecasting the data than the ARIMA 

model. 

The previous results all support the goal of the 

thesis, to demonstrate the effectiveness of a chaotic 

model for random looking data sets.  Another result 

which deserves mention is the R/S  plot for the 

strictly alternating series examined in Chapter 3. 

The plot showed two essentially parallel lines.  A 

similar plot to this, not included in this thesis, was 

observed when using R/S  analysis on the logistic 

equation for the parameter A. = 3.6. 

Conclusions 

The results here demonstrate that it is possible 

to recover, or at least effectively approximate, the 

functions which generated a series of random looking 

data.  This means that a system which has a low 

dimensional deterministic mechanism can be effectively 

modeled in the same way using only a series of 

experimental observations.  Experimental results which 

appear to be random noise, then, should be tested 

using the tools described in this thesis to test 

whether the random looking results may actually have a 

very simple deterministic mechanism. 
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Recommendations 

The appearance of two distinct lines in the R/S 

plot for the alternating series is not fully 

understood.  This may present a challenge when 

studying data sets with a high degree of 

antipersistence.  Further study of data sets with 

small Hurst coefficients is suggested to fully 

understand this result. 

In applying R/S  analysis to pseudo-random time 

series, the need for some distribution theory has 

become apparent.  For small sample sizes such as those 

used in this study, the expected Hurst coefficient for 

a random process appears to be significantly different 

from 0.5.  A theoretical development of the expected 

coefficient and a confidence interval for rejecting 

the deterministic hypothesis is recommended.  An 

alternative to this approach would be the development 

of an approximate distribution through experimentation 

using a large number of independent series of pseudo- 

random numbers may also be useful. 

Another aspect of the Hurst coefficient which 

deserves study is the constant term in the linear 

regression use to approximate H.     This is simply the 
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intercept term for the log/log plot of R/S  against n. 

It appears that this term should have some 

significance and may be very useful for small data 

sets.  More study is required to determine if this 

coefficient does have any significance and, if so, 

whether it would be useful in analysis such as that 

described here. 

Extensions 

The techniques demonstrated using data from known 

chaotic functions should next be applied to random 

looking data from real world systems.  Preliminary 

attempts on data sets from the Dow Jones average, 

monthly rainfall totals, and sunspot numbers revealed 

some degree of structure in all cases but no success 

was attained in modeling the systems.  It is likely 

that these systems are too complicated for the 

techniques described here.  Further research should 

focus on data sets which have simpler mechanisms than 

those described above.  An example might be data taken 

from a chaotic water wheel such as the one described 

in [17, p.27].  Briefly, this water wheel has a flow 

of water into the cups at the top and each cup has a 

drain hole in the bottom.  For some water flow rates 
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and hole sizes, the motion of the water wheel becomes 

chaotic.  This behavior is similar to that of the 

logistic equation which is chaotic for some parameter 

values.  The water wheel may be a good candidate for 

study since the physical laws governing its motion are 

relatively simple.  Another possible approach is to 

study data sets generated from known chaotic functions 

which are more complex than those studied in this 

work. 

Hopefully, by increasing the complexity of the 

systems in small increments, new methods will evolve 

which ultimately will allow the researcher to deal 

with complicated systems such as the economy and the 

weather. 
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APPENDIX A 

HURST  COEFFICIENT  PROGRAM 

Description 

The following BASIC program was written by Dr. 

William Lesso and has not been modified from its 

original form.  The program requires that input files 

be in Lotus format, that is the first entry in the 

data set must be the number of points contained in the 

data set.  Additionally, the files must have a .prn 

extension.  The output file has five columns of 

numbers and from left to right these are: (1) n,    (2) 

{R/S)n,    (3) log(n), (4) log(R/S)n,   and an estimate of 

H  given by (log (R/S) n) /log (n) . 

5 KEY OFF 
10 REM CALCULATION OF HURST COEFFICIENT 
20 ID = 0 
24 N = 2500 
25 DIM X(N) 
100 TV$ = "UNIV OF TEXAS" 
110 CV$ = "CHAOS ANALYSIS PROJECT" 
115 PV$ = "HURST COEFFICIENT PROGRAM" 
130 DIM CL$(10) 
135 NL = 8 
140 CL$(1) = " N 
150 CL$(2) = " D 
160 CL$(3) = " L 
170 CL$(4) = " C 
180 CL$(5) = " S 
190 CL$(6) = " P 

NEW PROBLEM" 
DISK READ/WRITE" 
LIST DATA" 
CHANGE DATA" 
SOLVE" 
PRINT RESULTS" 
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200 CL$(7) = 
210 CL$(8) = 
250 CLS 
251 PRINT 
252 PRINT 
253 PRINT 
300 CLS 
301 PRINT 
302 PRINT 
303 PRINT 
304 PRINT 
310 FOR I 
NEXT I 
320 PRINT 

1 = 0 
IF C$ 

TAB(25) 
: PRINT 
: PRINT 

TAB(25) 
: PRINT 
: PRINT 
TAB (29) 

E 
Q 

t    ,    TV$ 
TAB(25) 
TAB(25) 

; , TV$ 
TAB(25) 
TAB(25) 
DV$ 

EXAMPLE 
QUIT" 

PROBLEM" 

CV$ 
PV$ 

CV$ 
PV$ 

= 1 TO NL: PRINT : PRINT TAB(25); CL$(I) 

; INPUT "COMMAND "; C$ : PRINT TAB(30) 

= "" THEN 330 
325 
330 
331 IF C$ = "N" THEN I = 
332 IF C$ = "D" THEN I = 
333 IF C$ = "L" THEN I = 
334 IF C$ = "C" THEN I = 
335 IF C$ = "S" THEN I = 
336 IF C$ = "P" THEN I = 
337 IF C$ = "E" THEN I = 
338 IF C$ = "Q" THEN I = 
340 IF I = 0 THEN 300 
350 PRINT 
351 PRINT : PRINT TAB(25) 
352 PRINT TAB(20); " 
360 C$ = INKEY$: IF C$ = 
<> 13 AND C$ <> "Y" THEN 

; CL$(I) 
CONFIRM "; 
"" THEN 360 ELSE IF ASC(C$) 
PRINT CHR$(29); CHR$(30) ; 

CHR$(29); : GOTO 320 
370 IF C$ = "X" THEN 300 
400 CLS : ON I GOSUB 1000, 
6000, 7000, 8000 
410 GOTO 300 
1000 REM NEW PROBLEM 
1005 CLS : PRINT : 
PROGRAM, 1.0" 
1010 PRINT : PRINT 
1015 ID = 1 
1019 PRINT 
1020 PRINT : PRINT TAB(20) 
PAIRS ": INPUT N 
1027 PRINT : PRINT TAB(20) 

2000, 3000, 4000, 5000 

"CURVE FITTING PRINT TAB(20) 

TAB(20); "NEW PROBLEM" 

"ENTER THE NUMBER OF DATA 

"ENTER THE DATA 
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Y(I): NEXT I 

"DISC READ/WRITE" 
PRINT TAB(20); "CURRENT MAX-LIKE HD FILES 

": PRINT 

1030 FOR I = 1 TO N: INPUT X(I), 
1950 FOR IT = 1 TO 1000: NEXT 
1990 RETURN 
2000 REM DISC READ/WRITE 
2010 CLS : PRINT : PRINT TAB(20) 
2030 PRINT 
ON DISK ARE 
2040 
2050 
FROM 
2060 
DISK" 
2070 
MAIN 
2080 
INPUT 

PRINT TAB(20) 
PRINT : PRINT 
DISK" 
PRINT 

: : FILES 
TAB(20) 

PRINT 
MENU" 
PRINT 
C$ 

PRINT TAB(20) 

PRINT TAB(20) 

PRINT TAB(20) 

ii * 

"R 
. PRN" 
- READ AN EXISTING FILE 

"W - WRITE CURRENT FILE TO 

»X - DO NOTHING, RETURN TO 

"YOUR CHOICE (R,W,X)"; : 

2 090 IF C$ = "X" THEN RETURN ELSE IF C$ = "W" THEN 
2300 ELSE IF C$ <> "R" THEN PRINT TAB(20); "PLEASE 
ENTER R, W OR X ! ! !": GOTO 2050 
2100 REM READ DATA FROM DISK 

F$ = "": PRINT : PRINT TAB(20); "FILE NAME TO BE 
- (.PRN WILL BE ADDED)"; : INPUT F$ 
IF F$ = "" THEN 2110 

".PRN" 

2110 
READ 
2120 
2130 
2135 
2140 
2150 
2160 
2170 
2180 
2200 
2210 
2300 
2310 
PRINT : PRINT 
(.PRN WILL BE 
2320 IF F$ = 
2340 F$ = F$ + 
2350 OPEN "O", 
2360 PRINT #1, 
2370 FOR 1=1 
2380 PRINT #1, 
2390 NEXT I 
2410 CLOSE 

F$ = F$ + 
ID = 1 
OPEN "I", 
INPUT #1, 
FOR 1=1 
INPUT #1, 
NEXT I 
CLOSE 
RETURN 
REM WRITE 
IF ID = 0 

#1, 
N 
TO N 
X(I) 

F$ 

DATA 
THEN 

TAB(20); 
ADDED) " 

TO DISK 
CLS : GOTO 

INPUT 
F$ 

9000 ELSE F$ = "": 
"FILE NAME FOR SAVING 

II II GOTO 2310 
".PRN" 
#1, F$ 
N, M 
TO N 
X(I) 
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2420 RETURN 
2950 FOR IT = 1 TO 1000: NEXT 
2990 RETURN 
3000 REM LIST DATA 
3010 CLS : PRINT : PRINT TAB(20); "LIST DATA" 
3015 IF ID = 0 THEN PRINT TAB(20); "NO DATA HAVE BEEN 
ENTERED OR READ FROM DISK": FOR IT = 1 TO 1000: NEXT: 
RETURN 
3020 PRINT : PRINT TAB(20); "THE FOLLOWING DATA HAS 
BEEN ENTERED": 
3045 LN = 6 
3046 PRINT : PRINT TAB(15); "    I       X(I) 
Y(I) " 
3050 FOR I = 1 TO N 
3052 PRINT TAB(18); I, X(I) 
3053 NEXT I 
3055 IF LN >= 22 GOTO 9200 
3065 LN = LN + 2: IF LN >= 30 THEN GOSUB 9200 
309 0 LN = LN + 2: IF LN >= 30 THEN GOSUB 9200 
3400 PRINT : PRINT TAB(20); : INPUT "PRESS <ENTER> TO 
RETURN TO MAIN MENU..."; C$ 
399 0 RETURN 
4 000 REM CHANGE DATA 
4010 CLS : PRINT : PRINT TAB(20); "CHANGE DATA" 
4020 PRINT : PRINT TAB(20); "DO YOU WANT A LISTING OF 
THE DATA - (Y/N) "; : INPUT C$ 
4030 IF C$ = "Y" OR C$ = "y" THEN GOSUB 3000 
4920 FOR IT = 1 TO 1000: NEXT 
49 3 0 RETURN 
5000 REM SOLVE 
5010 CLS : PRINT : PRINT TAB(20); "SOLVE" 
5011 IF ID = 0 THEN CLS : GOTO 9000 ELSE F$ = "": 
PRINT : PRINT TAB(20); : INPUT "FILE NAME FOR SAVING 
(.PRN WILL BE ADDED) "; F$ 
5012 IF F$ = "" GOTO 5011 
5013 F$ = F$ + ".PRN" 
5014 OPEN "O", #1, F$ 
5020 M=N/2:NI=3 
5021 PRINT : PRINT TAB (20) ; "WORKING " 
5030 FOR I = 1 TO M 
5035 LLO = 1: LHI = NI: RSUM =0: CNT = 0 
5040 SUM = 0: SUM2 = 0 
5045 FOR J = LLO TO LHI 
5050 SUM = SUM + X(J): SUM2 = SUM2 + X(J) * X(J) 
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5051 'PRINT J,X(J),SUM,SUM2 
5055 NEXT J 
5060 XBAR = SUM / NI 
5068 'PRINT NI;LLO;LHI;SUM; SUM2;XBAR 
5069 XMIN = 99999!: XMAX = -99999!: CUM = 0: SUMSD = 0 
5070 FOR J = LLO TO LHI 
5071 SUMSD = SUMSD + (X(J) - XBAR) A 2 
5075 CUM = CUM + (X(J) - XBAR) 
5080 IF CUM < XMIN THEN XMIN = CUM 
5085 IF CUM > XMAX THEN XMAX = CUM 
509 0 NEXT J 
5091 SD = (SUMSD / (NI - 1)) A .5 
5095 RSUM = RSUM + (XMAX - XMIN) / SD: CNT = CNT + 1 
5096 'PRINT J, RSUM, CNT 
5100 LLO = LLO + NI: LHI = LHI + NI 
5105 IF LHI <= N GOTO 5040 
5110 RS = RSUM / CNT 
5115 LNN = LOG(NI / 2) 
5120 LNRS = LOG(RS) 
5122 HURST = LNRS / LNN 
5124 PRINT NI, RS, LNN, LNRS, HURST 
5125 PRINT #1, NI, RS, LNN, LNRS, HURST 
5130 NI = NI + 1 
5500 NEXT I 
5519 CLOSE 
5700 INPUT "CONTINUE "; C$ 
5920 FOR IT = 1 TO 9000: NEXT 
6 000 REM PRINT RESULTS 
6010 CLS : PRINT : PRINT TAB(20); "PRINT RESULTS" 
6040 LN = 1 
6046 PRINT : PRINT TAB(15); "    I       X(I) 
Y(I) Yhat(I)    %ERR" 
6325 LN = LN + 2 
6345 LN = LN + 2 
6360 IF LN >= 30 THEN GOSUB 9200 
639 0 PRINT 
6400 PRINT : PRINT TAB(20); : INPUT "PRESS <ENTER> TO 
RETURN TO MAIN MENU..."; C$ 
6920 FOR IT = 1 TO 1000: NEXT 
69 30 RETURN 
7000 REM EXAMPLE PROBLEM 
7010 CLS : PRINT : PRINT TAB(20); "EXAMPLE PROBLEM" 
7020 F$ = "SAMPLE": GOTO 2130 
7025 GOSUB 3000 
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7030 RETURN 
7920 FOR IT = 1 TO 1000: NEXT 
7930 RETURN 
8000 REM QUIT 
8010 CLS : PRINT PRINT TAB(20); "QUIT" 
8020 FOR IT = 1 TO 1000: NEXT 
8025 END 
8030 RETURN 
9000 IF ASC(C$) > 95 THEN C$ = CHR$(ASC(C$) 
RETURN 
9200 PRINT : PRINT TAB(20); 
"; : C$ = INKEY$ 
9205 LN = 0 
9220 IF INKEY$ = "" THEN 9220 ELSE CLS 

32) 

PRESS ENTER TO CONTINUE 

RETURN 
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APPENDIX     B 

CORRELATION     INTEGRAL     PROGRAM 

Description 

The  following code  is  essentially a  translation, 

into Turbo  Pascal  5.0,   of  BASIC code recieved  from Dr. 

William Lesso.     The major contribution  is  a 

significant  addition of  documentation within  the code. 

{ The algorithm is from similar BASIC code received from Dr. William      } 
{ Lesso. > 
{ The code was created on 14 OCT 94 by J. Robert Bookhart, UT Austin } 
I***********************************************************} 

PROGRAM Correlationlntegral; 

<*********************************************************** 

{ This program prompts the user for the names of the files to read data 
{ from and write data to, the number of points in the data file, the 
{ embedding dimension to use when reconstructing the attractor, the time 
{lag used for reconstructing the phase space, the initial R value to use 
{ when counting the number of pairs of points separated by less than R and 
{the increment used to increase R with each iteration. The output file 
{ file contains two columns of numbers. The first column is the value of 
{the correlation integral for the R value and the second column is the R 
{ value. The only screen output is an update of the current iteration in 
{ progress and a message (with a beep) indicating the program is complete, 
r*********************************************************** 
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USES 
CRT; 

TYPE 
TwojLVector = Array [1..1000.1..7] of Real; 
One_d_Vector = Array [1..1000] of Real; 
FileName = String[12]; 

{ The two vector types allow a maximum data set length of 1,000 points     } 
{ and a maximum embedding dimension of 7. } 

VAR 
EmbeddingDimension 

NumberOfPoints 

TimeLag 

R Value 

R_Increment 

X 

: Integer; {Dimension for the } 
{ reconstructed phase space   } 

: Integer; { Number of points in data set   } 

: Integer; { Lag time used to } 
{ reconstruct the attractor      } 

: Real; { Initial value of the distance } 
{ used when counting the } 
{ number of pairs of points } 
{ within distance R } 

: Real; { step size to increase the value } 
{ of R with each iteration        } 

: Two_d_Vector;        { The points on the     } 
{reconstructed attractor} 

One_d_Vector; { The original series values} 
{read in from a data file    } 

OutputFileJnputFile 
InputFileName 

OutputFileName 

: Text; 
: FileName;      { File name to read data from } 

: FileName;     { File name to write data to    } 
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Xheta : Longlnt;       {Used to store the count of the } 
{ number of pairs of points } 
{ separated by less than R } 

PROCEDURE GetlnputValues     (VAR Val 1, Val2, Val3 
VAR Val4, Val5 
VAR Namel, Name2 

Integer; 
Real; 
FileName); 

I********************************************************** 

{ This procedure prompts the user to input the read file name, the 
{ desired output file name, the number of points in the read file, the 
{ embedding dimension to use to reconstruct the attractor, the time lag 
{to use when reconstructing the attractor, the initial R value and the 
{the value with which to increment R with each iteration. These 
{ inputs are then passed to the main program. 
I********************************************************** 

BEGIN (* GetlnputValues *) 

Clrscr; 
Writeln ('Enter the name of the file to be read in:'); 
Readln (Namel); 
Writeln ('Enter the name of the file to output data to:'); 
Readln (Name2); 
Writeln ('Input the Number of points in the data set:'); 
Readln (Vail); 
Writeln ('Input the Embedding dimension to be used:'); 
Readln (Val2); 
Writeln ('Input the time lag used to construct the phase space:'); 
Readln (Val3); 
Writeln ('Input the initial R value:'); 
Readln (Val4); 
Writeln ('Input the value to increment R with each iteration:'); 
Readln (Val5) 

End; (* Getlnput Values *) 
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PROCEDURE ReadFile (VAR DataList: One_d_Vector); 

r**********************************************************} 

{ This procedure reads the data from a file into memory as a one } 
{ dimensional array called DataList } 

VAR 
I: Integer; { Looping variable } 

BEGIN (* ReadFile *) 
Assign (InputFile , InputFileName); 
Reset (InputFile); 
For I := 1 to NumberOfPoints DO 

Readln(InputFile,DataList[I]); 
Close(InputFile) 

END; (* ReadFile *) 
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PROCEDURE ReconstructPhaseSpace; 

{ This procedure reconstructs the attractor in phase space with dimension 
{ equal to the embedding dimension, n. The points on the attractor are 
{ ordered n-tuples. That is, a point, z, on the attractor is of the form 
{ zt = (xt,xt_i,xt_2,...,xt_(n_n). The variable Z[I,J] is used to 
{ represent these n-tuples. The index, I, represents the number of the 
{ point on the attractor and the index, J, represents the Jth component 
{ ofthat n-tuple. For example, using the point zt above, Z[t,2] holds 
{the value x^.]. 
************************************************************ 

VAR 
I,J : Integer; { counter variables used in loops} 

BEGIN (* ReconstructPhaseSpace *) 

FOR I := 1 to NumberOfPoints DO 
FOR J := 1 to EmbeddingDimension DO 

Z[I,J] := X[I + (J-l) * TimeLag]; 
END; (* ReconstructPhaseSpace *) 
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PROCEDURE CountPoints (VAR NumberOfPoints: Integer); 

VAR 
DistanceBetweenPoints   : Real; 

Theta2 

J,K,L 

Lag 

: Integer; 

: Integer; 

: Integer; 

{ distance between pairs of 
{ points on the attractor 

{has the value 1 if the pair of 
{ points is separated by less 
{than R, 0 otherwise 

{ counters for loops 

{ used as an index when 
{ finding the distance 
{ between pairs of points 

BEGIN (* CountPoints *) 
Lag:=l; 
Theta := 0; 
Theta2 := 0; 

FOR K := 1 to NumberOfPoints DO 
BEGIN (* For Loop K *) 

FOR L := 1 to NumberOfPoints DO 
BEGIN (* For Loop L *) 

DistanceBetweenPoints := 0; 
FOR J := 1 to EmbeddingDimension DO 
DistanceBetweenPoints := DistanceBetweenPoints 

+ Sqr(Z[Lag,J] - Z[L,J]); 
DistanceBetweenPoints := Sqrt(DistanceBetweenPoints); 

IF DistanceBetweenPoints > RJValue Then Theta2 := 0 
ELSETheta2:=l; 

Theta := Theta + Theta2; 

END; (* For Loop L *) 
Lag:=Lag+ 1; 

END; (* For Loop K *) 
END; (* CountPoints *) 
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PROCEDURE Calculatelntegral (NumberOfPoints: Integer); 

{ This procedure calculates the value of the correlation integral and } 
{ writes it to the output file. / 

VAR 
Correlationlnt        : Real; {value of the correlation integral       } 

I : Integer; {looping variable } 

BEGIN (* Calculatelntegral *) 
Assign (OutputFile,OutputFileName); 
Rewrite (OutputFile); 
NumberOfPoints := NumberOfPoints - EmbeddingDimension * TimeLag; 
FOR I :=1 to 13 DO 
BEGIN (* For Loop *) 

Writeln ('Doing the ',1,'th iteration'); 
CountPoints (NumberOfPoints); 
Correlationlnt := Sqr(l/NumberOfPoints) * Theta; 
Write (OutputFile,CorrelationInt:7:5); 
Write (OutputFile,'     '); 
Writeln (OutputFile,R_Value:7:5); 
R_Value := R_Value + RJncrement; 
Correlationlnt := 0; 

END; (* For Loop *) 
Close (OutputFile); 

END; (* Calculatelntegral *) 
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BEGIN (* Main Program *) 

Clrscr; 
GetInputValues(NurnberOfPoints,ErnbeddingDimension,TimeLag,R_Value, 

R_Increment,InputFileName,OutputFileName); 

ReadFile (X); 
ReconstructPhaseSpace; 
Calculatelntegral (NumberOfPoints); 
Sound(440); 
Delay(2000); 
NoSound; 
Writeln ('WHEW, that was a lot of work...Hit <Enter> to go to DOS'); 
Readln; 

End. (* Main Program *)• 
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APPENDIX  C 

LYAPUNOV  EXPONENT  PROGRAM 

The following BASIC code is a revision of a 

program obtained from Dr. William Lesso.  The code, in 

its original form, contained several significant 

errors in the algorithm.  Dr. Lesso cites Edgar Peters 

as reference in the creation of this program and in 

researching the subject it appears the original source 

is a FORTRAN program provided in the paper [11].  This 

reference is recommended for further reading about the 

method used. 

BASIC code 

2 PI = 3.141592654# 
5 KEY OFF:REM LARGEST LYAPUNOV EXPONENT 
10 DIM X(IOOO),PT1(12),PT2(12) 
20 DIM Z(1000,5) 
30 OPEN "LYAP.PRN" FOR OUTPUT AS 2 LEN=500 
40 VT$ = •'###.######   #### ##.####  ##.####" 
60 PRINT»NPT,DIM,TAU,DT,SCALMX,SCALMN,EVOLV,LAG?" 
7 0 INPUT NPT: REM NUMBER OF OBSERVATIONS 
80 INPUT DIMEN: REM EMBEDDING DIMENSION 
9 0 INPUT TAU: REM LAG TIME FOR PHAS SPACE 
100 INPUT DT :REM TIME INCREMENT IN SERIES FOR 

NORMALIZING EXPONENT 
110 INPUT SCALMX: REM MAXIMUM DIVERGENCE 
120 INPUT SCALMN:REM MINIMUM DISTANCE 
13 0 INPUT EVOLV: REM EVOLUTION TIME 
140 IND = 1 
150 INPUT LAG :PRINT"MINIMUM TIME BETWEEN PAIRS" 
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160 SUM = 0 
170 ITS=0 
180 OPEN "DELAY.PRN" FOR INPUT AS 1 LEN=2500:REM INPUT 

FILE 
185 PRINT"READING DATA" 
190 FOR I = 1 TO NPT 
200     INPUT#1,X(I) 
210 NEXT I 
220 PRINT TAB(15) "DATA READ" 
230 FOR I = 1 TO NPT-(DIMEN-1)*TAU 
240     FOR J = 1 TO DIMEN 
250 Z(I,J)=X(I+(J-D*TAU) 

260     NEXT J 
27 0 NEXT I 
275 PRINT TAB(15) "DATA FORMATTED" 
280 NPT=NPT-DIMEN*TAU-EVOLV: REM MAX LENGTH OF PHASE 

SPACE 
290 DI = 100000000# 
300 FOR I = (LAG+1) TO NPT: REM FIND INITIAL PAIR 

310     D = 0 
320     FOR J = 1 TO DIMEN 
330 D = D + (Z(IND,J)-Z(I,J))A2: REM CALCULATE 

DISTANCE 
34 0     NEXT J 
350     D = SQR(D) 
360     IF (D>DI) OR (D< SCALMN) GOTO 390: REM STORE 

BEST POINT 
370     DI = D 
380     IND2=I 
39 0 NEXT I 
400 FOR J = 1 TO DIMEN:REM COORDINATES OF EVOLVED 

POINTS 
410     PT1(J)=Z(IND+EVOLV,J) 
420     PT2(J)=Z(IND2+EVOLV,J) 

430 NEXT J 
440 DF = 0 
450 FOR J = 1 TO DIMEN: REM COMPUTE FINAL DIVERGENCE 
460     DF = DF +(PT2(J)-PTl(J))*2 
47 0 NEXT J 
480 DF = SQR(DF) 
490 ITS = ITS + 1 
500 SUM = SUM +(LOG(DF/DI)/(EVOLV*DT*LOG(2))) 
510 ZLYAP = SUM/ITS 
520 PRINT #2, USING VT$; ZLYPA, EVOLV*ITS,DI,DF 
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54 0 INDOLD = IND2 
550 ZMULT=1 
560 ANGLMX=.3 
570 THMIN =3.14 
575 REM LOOK FOR REPLACEMENT POINTS 
580 FOR I = 1 TO NPT 
590     III=ABS(INT(I-(IND+EVOLV))) 
600 IF IIKLAG GOTO 780 
605 REM REJECT IF REPLACEMENT POINT IS TOO CLOSE TO 

ORIGINAL 
610 DNEW = 0 
62 0 FOR J = 1 TO DIMEN 
630     DNEW = DNEW +(PTl(J)-Z(I,J))A2 
640 NEXT J 
650 DNEW = SQR(DNEW) 
660 IF (DNEW>ZMULT*SCALMX) OR ( DNEW < SCALMN) GOTO 

780 
670 DOT = 0 
680 FOR J = 1 TO DIMEN 
690     DOT = DOT + (PTl(J)-Z(I,J))*(PTl(J)-PT2(J)) 
7 00 NEXT J 
710 CTH=ABS(DOT/(DNEW*DF)) 
72 0 IF (CTH>1) THEN CTH=1 
730 TH=Pl/2 - ATN(CTH/SQR(1 - CTHA2)) :REM USE ARCTAN 

TO FIND ARCCOS(CTH) 
740 IF (TH>THMIN) GOTO 7 80 
750 THMIN=TH 
760 DII=DNEW 
770 IND2 = I 
780 NEXT I 
79 0 IF (THMIN<ANGLMX) GOTO 870 
800 ZMULT=ZMULT+1 
810 IF (ZMULT<5) GOTO 570 
82 0 ZMULT = 1 
830 ANGLMX=2*ANGLMX 
840 IF (ANGLMX<3.14) GOTO 570 
850 IND2=INDOLD+EVOLV 
860 DII=DF 
870 IND=IND+EVOLV 
880 IF (IND>=NPT) GOTO 910 
890 DI = DII 
900 GOTO 400 
910 END 
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